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Abstract

In Section A, we provide the complete block coordinate ascent algorithm described
in Section 3, additional implementation details (i.e. tuning hyperparameters, updat-
ing the variance parameter, and initializing the parameters in the algorithm), and
details of the nodewise regression approach for estimating Θ̂ in Section 4 of the main
manuscript. In Section B, we provide additional simulation results on the perfor-
mance of the SSGL approach in both sparse and dense settings, its performance in
estimation of the residual variance σ2, and timing comparisons. In Section C, we
provide results for data analyses on benchmark data sets where p < n and additional
discussion and analysis of the two real data sets in Section 8 of the main manuscript.
In Section D, we provide the proofs for the theoretical results in the main manuscript.
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A Additional Computational Details

A.1 SSGL Block-Coordinate Ascent Algorithm

Algorithm 1 Spike-and-Slab Group Lasso
Input: grid of increasing λ0 values I = {λ10, . . . , λL0 }, update frequency M

Initialize: β∗ = 0p, θ∗ = 0.5, σ∗2 as described in Section A.2, ∆∗ according to (3.11) in the main manuscript

For l = 1, . . . , L:

1. Set iteration counter kl = 0

2. Initialize: β̂(kl) = β∗, θ(kl) = θ∗, σ(kl)2 = σ∗2, ∆U = ∆∗

3. While diff > ε

(a) Increment kl

(b) For g = 1, . . . , G:

i. Update

β
(kl)
g ←

1

n

(
1−

σ(kl)2λ∗(β
(kl−1)
g ; θ(kl))

‖zg‖2

)
+

zg I(‖zg‖2 > ∆U )

ii. Update

Ẑg =

1 if β
(kl)
g 6= 0mg

0 otherwise

iii. If g ≡ 0 mod M :

A. Update

θ(kl) ←
a+

∑G
g=1 Ẑg

a+ b+G

B. If kl−1 < 100:

Update σ(kl)2 ←
‖Y −Xβ(kl)‖22

n+ 2

C. Update

∆U ←


√

2nσ(kl)2 log[1/p∗(0mg ; θ(kl))] + σ(kl)2λ1 if h(0mg ; θ(kl)) > 0

σ(kl)2λ∗(0mg ; θ(kl)) otherwise

iv. diff = ‖β(kl) − β(kl−1)‖2

4. Assign β∗ = β(kl), θ∗ = θ(kl), σ∗2 = σ2(kl), ∆∗ = ∆U
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A.2 Tuning Hyperparameters, Initializing Values, and Updating

the Variance in Algorithm 1

We keep the slab hyperparameter λ1 fixed at a small value. We have found that our

results are not very sensitive to the choice of λ1. This parameter controls the variance of

the slab component of the prior, and the variance must simply be large enough to avoid

overshrinkage of important covariates. For the default implementation, we recommend

fixing λ1 = 1. This applies minimal shrinkage to the significant groups of coefficients and

affords these groups the ability to escape the pull of the spike.

Meanwhile, we choose the spike parameter λ0 from an increasing ladder of values. We

recommend selecting λ0 ∈ {1, 2, ..., 100}, which represents a range from hardly any pe-

nalization to very strong penalization. Below, we describe precisely how to tune λ0. To

account for potentially different group sizes, we use the same λ0 for all groups but multiply

λ0 by
√
mg for each gth group, g = 1, . . . , G. As discussed in Huang et al. (2012), further

scaling of the penalty by group size is necessary in order to ensure that the same degree of

penalization is applied to potentially different sized groups. Otherwise, larger groups may

be erroneously selected simply because they are larger (and thus have larger `2 norm), not

because they contain significant entries.

When the spike parameter λ0 is very large, the continuous spike density approximates

the point-mass spike. Consequently, we face the computational challenge of navigating

a highly multimodal posterior. To ameliorate this problem for the spike-and-slab lasso,

Ročková and George (2018) recommend a “dynamic posterior exploration” strategy in

which the slab parameter λ1 is held fixed at a small value and λ0 is gradually increased

along a grid of values. Using the solution from a previous λ0 as a “warm start” allows

the procedure to more easily find optimal modes. In particular, when (λ1 − λ0)2 ≤ 4, the
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posterior is convex.

Moran et al. (2019) modify this strategy for the unknown σ2 case. This is because the

posterior is always non-convex when σ2 is unknown. Namely, when p � n and λ0 ≈ λ1,

the model can become saturated, causing the residual variance to go to zero. To avoid this

suboptimal mode at σ2 = 0, Moran et al. (2019) recommend fixing σ2 until the λ0 value

at which the algorithm starts to converge in less than 100 iterations. Then, β and σ2 are

simultaneously updated for the next largest λ0 in the sequence. The intuition behind this

strategy is we first find a solution to the convex problem (in which σ2 is fixed) and then

use this solution as a warm start for the non-convex problem (in which σ2 can vary).

We pursue a similar “dynamic posterior exploration” strategy with the modification for

the unknown variance case for the SSGL in Algorithm 1 of Section A.1. A key aspect of

this algorithm is how to choose the maximum value of λ0. Ročková and George (2018) rec-

ommend this maximum to be the λ0 value at which the estimated coefficients stabilize. An

alternative approach is to choose the maximum λ0 using cross-validation, a strategy which

is made computationally feasible by the speed of our block coordinate ascent algorithm. In

our experience, the dynamic posterior exploration strategy favors more parsimonious mod-

els than cross-validation. In the simulation studies in Section 7, we utilize cross-validation

to choose λ0, as there, our primary goal is predictive accuracy rather than parsimony.

Following Moran et al. (2019), we initialize β∗ = 0p and θ∗ = 0.5. We also initialize σ∗2

to be the mode of a scaled inverse chi-squared distribution with degrees of freedom ν = 3

and scale parameter chosen such that the sample variance of Y corresponds to the 90th

quantile of the prior. We have found this initialization to be quite effective in practice at

ensuring that Algorithm 1 converges in less than 100 iterations for sufficiently large λ0.
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A.3 Additional Details for the Inference Procedure

Here, we describe the nodewise regression procedure for estimating Θ̂ in Section 4. This

approach for estimating the inverse of the covariance matrix Σ̂ = XTX/n was originally

proposed and studied theoretically in Meinshausen and Bühlmann (2006) and van de Geer

et al. (2014).

For each j = 1, . . . , p, letXj denote the jth column ofX andX−j denote the submatrix

of X with the jth column removed. Define γ̂j as

γ̂j = arg minγ(||Xj −X−jγ||22/n+ 2λj||γ||1).

Now we can define the components of γ̂j as γ̂j,k for k = 1, . . . , p and k 6= p, and create the

following matrix:

Ĉ =


1 −γ̂1,2 . . . −γ̂1,p

−γ̂2,1 1 . . . −γ̂2,p

...
...

. . .
...

−γ̂p,1 −γ̂p,2 . . . 1

 .

Lastly, let T̂ 2 = diag(τ̂ 2
1 , τ̂

2
2 , . . . , τ̂

2
p ), where

τ̂j = ||Xj −X−jγ̂j||22/n+ λj||γ̂j||1.

We can proceed with Θ̂ = T̂−2Ĉ. This choice is used because it puts an upper bound on

||Σ̂Θ̂T
j −ej||∞. Other regression models such as the original spike-and-slab lasso (Ročková

and George, 2018) could be used instead of the lasso (Tibshirani, 1996) regressions for

each covariate. However, we will proceed with this choice, as it has already been studied

theoretically and shown to have the required properties to be able to perform inference for

β.

5



Out of sample MSE

0.0

0.2

0.4

0.6

0.8

1.0

SSGL

Gro
up

La
ss

o

Ran
do

m
Fo

re
st

Sof
tB

ar
t

Sup
er

Le
ar

ne
r

Gro
up

Spik
e

Precision

0.0

0.2

0.4

0.6

0.8

1.0

SSGL

Gro
up

La
ss

o

Ran
do

m
Fo

re
st

Sof
tB

ar
t

BSGS

Gro
up

Spik
e

Recall

0.0

0.2

0.4

0.6

0.8

1.0

SSGL

Gro
up

La
ss

o

Ran
do

m
Fo

re
st

Sof
tB

ar
t

BSGS

Gro
up

Spik
e

Figure 1: Simulation results from the sparse setting with n = 300. The left panel presents

the out-of-sample mean squared error, the middle panel shows the precision score, and the

right panel shows the recall score. The MSE for BSGS is not displayed as it lies outside of

the plot area.

B Additional Simulation Results

Here, we present additional results which include different sample sizes than those seen in

the manuscript, assessment of the SSGL procedure under dense settings, estimates of σ2,

timing comparisons, and additional figures.

B.1 Increased Sample Size for Sparse Simulation

Here, we present the same sparse simulation setup as that seen in Section 7.1, though we

will increase n from 100 to 300. Figure 1 shows the results and we see that they are very

similar to those from the manuscript, except that the mean squared error (MSE) for the

SSGL approach is now nearly as low as the MSE for the GroupSpike approach, and the

precision score has improved substantially.
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Figure 2: Simulation results from the less sparse setting with n = 100 and n = 300. The

left column shows out-of-sample MSE, the middle panel shows the precision score, and the

right column shows the recall score.

B.2 Dense Model

Here, we generate independent covariates from a standard normal distribution, and we let

the true regression surface take the following form

E(Y |X) =
20∑
j=1

0.2Xj + 0.2X2
j ,

with variance σ2 = 1. In this model, there are no strong predictors of the outcome, but

rather a large number of predictors which have small impacts on the outcome. Here, we
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display results for both n = 100 and p = 300, as well as n = 300 and p = 300, as the

qualitative results change across the different sample sizes. Our simulation results can be

seen in Figure 2. When the sample size is 100, the SSGL procedure performs the best

in terms of both MSE and recall score, while all approaches do poorly with the precision

score. When the sample size increases to 300, the SSGL approach still performs quite well

in terms of MSE and recall, though the GroupLasso and GroupSpike approaches are slightly

better in terms of MSE. The SSGL approach still maintains a low precision score while the

GroupSpike approach has a very high precision once the sample size is large enough.

B.3 Estimation of σ2

To evaluate our ability to estimate σ2 and confirm our theoretical results that the posterior

of σ2 contracts around the true parameter, we ran a simulation study using the following

data generating model:

E(Y |X) = 0.5X1 + 0.3X2 + 0.6X2
10 − 0.2X20,

with σ2 = 1. We vary n ∈ {50, 100, 500, 1000, 2000} and we set G = n to confirm that the

estimates are centering around the truth as both the sample size and covariate dimension

grows. We use groups of size two that contain both the linear and quadratic term for each

covariate. Note that in this setting, the total number of regression coefficients actually

exceeds the sample size since each group has two terms, leading to a total of p = 2G

coefficients in the model.

Figure 3 shows box plots of the estimates for σ2 across all simulations for each sample

size and covariate dimension. We see that for small sample sizes there are some estimates

well above 1 or far smaller than 1. This is because either some important variables are
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Figure 3: Boxplots of the estimates of σ2 from the SSGL model for a range of sample sizes.

Note that n = G in each scenario.

excluded (so the sum of squared residuals gets inflated), or too many variables are included

and the model is overfitted (leading to small σ̂2). These problems disappear as the sample

size grows to 500 or larger, where we observe that the estimates are closely centering around

the true σ2 = 1. Figure 3 confirms our theoretical results in Theorem 2 and Theorem 4

of the main manuscript, which state that as n,G → ∞, the posterior π(σ2|Y ) contracts

around the true σ2.
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Figure 4: Simulation results from the many groups setting with G = 2000. The left panel

presents the out-of-sample mean squared error, the middle panel shows the precision score,

and the right panel shows the recall score.

B.4 Large Number of Groups

We now generate data with n = 200 and G = 2000, where each group contains three

predictors. We generate data from the following model:

E(Y |X) =
G∑
g=1

Xgβg,

where we set βg = 0 for g = 1, . . . 1996. For the final four groups, we draw individual

coefficient values from independent normal distributions with mean 0 and standard devi-

ation 0.4. These coefficients are redrawn for each data set in the simulation study, and

therefore, the results are averaging over many possible combinations of magnitudes for the

true nonzero coefficients. We see that the best performing approach in this scenario is the

GroupSpike approach, followed by the SSGL approach. The SSGL approach outperforms

group lasso in terms of MSE and precision, while group lasso has a slightly higher recall

score.
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B.5 Computation Time

In this study, we evaluate the computational speed of the SSGL procedure in compari-

son with the fully Bayesian GroupSpike approach that places point-mass spike-and-slab

priors on groups of coefficients. We fix n = 300 and vary the number of groups G ∈

{100, 200, . . . , 2000}, with two elements per group. For the SSGL approach, we keep track

of the computation time for estimating the model for λ0 = 20. For large values of λ0, it typ-

ically takes 100 or fewer iterations for the SSGL method to converge. For the GroupSpike

approach, we keep track of the computation time required to run 100 MCMC iterations.

Both SSGL and GroupSpike models were run on an Intel E5-2698v3 processor.

In any given data set, the computation time will be higher than the numbers presented

here because the SSGL procedure typically requires fitting the model for multiple values of

λ0, while the GroupSpike approach will likely take far more than 100 MCMC iterations to

converge, especially in higher dimensions. Nonetheless, this should provide a comparison

of the relative computation speeds for each approach.

The average CPU time in seconds can be found in Figure 5. We see that the SSGL

approach is much faster as it is able to estimate all the model parameters for a chosen λ0

in just a couple of seconds, even for G = 2000 (or p = 4000). When p = 2000, the SSGL

returned a final solution in roughly three seconds on average, whereas GroupSpike required

over two minutes to run 100 iterations (and would most likely require many more iterations

to converge). This is to be expected as the GroupSpike approach relies on MCMC. Figure 5

shows the large computational gains that can be achieved using our MAP finding algorithm.
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Figure 5: CPU time for the SSGL and GroupSpike approaches averaged across 1000 repli-

cations for fixed n = 300 and different group sizes G.

C Additional Results and Discussion for Real Data

Examples

In this section, we perform additional data analysis of the SSGL method on benchmark

datasets where p < n to demonstrate that the SSGL model also works well in low-

dimensional settings. We also provide additional analyses and discussion of the two real

data examples analyzed in Section 8 of the main manuscript.
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Data SSGL GroupLasso RandomForest SoftBart SuperLearner BSGS GroupSpike

Tecator 1 1.41 1.57 2.75 1.93 1.00 5.16 1.67

Tecator 2 1.25 1.58 2.91 1.97 1.00 6.77 1.41

Tecator 3 1.14 1.38 1.94 1.81 1.10 3.31 1.00

BloodBrain 1.10 1.04 1.00 1.01 1.00 1.24 1.13

Wipp 1.44 1.30 1.46 1.00 1.17 4.68 1.30

Table 1: Standardized out-of-sample root mean squared prediction error averaged across

1000 replications for the data sets in Section C.1. An RMSE of 1 indicates the best

performance within a data set.

C.1 Testing Predictive Performance of the SSGL on Datasets

Where p < n

We first look at three data sets which have been analyzed in a number of manuscripts,

most recently in Linero and Yang (2018). The tecator data set is available in the caret

package in R (Kuhn, 2008) and has three different outcomes Y to analyze. Specifically, this

data set looks at using 100 infrared absorbance spectra to predict three different features

of chopped meat with a sample size of 215. The Blood-Brain data is also available in the

caret package and aims to predict levels of a particular compound in the brain given 134

molecular descriptors with a sample size of 208. Lastly, the Wipp data set contains 300

samples with 30 features from a computer model used to estimate two-phase fluid flow

(Storlie et al., 2011). For each of these data sets, we hold out 20 of the subjects in the data

as a validation sample and see how well the model predicts the outcome in the held-out

data. We repeat this 1000 times and compute the root mean squared error (RMSE) for

prediction.
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Table 1 shows the results for each of the methods considered in the simulation study.

The results are standardized so that for each data set, the RMSE is divided by the min-

imum RMSE for that data set. This means that the model with an RMSE of 1 had the

best predictive performance, and all others should be greater than 1, with the magnitude

indicating how poor the performance was. We see that the top performer across the data

sets was SuperLearner, which is not surprising given that SuperLearner is quite flexible

and averages over many different prediction models. Our simulation studies showed that

SuperLearner may not work as well when p > n. However, the data sets considered here

all have p < n, which could explain its improved performance here. Among the other

approaches, SSGL performs quite well as it has RMSE’s relatively close to 1 for all the

data sets considered.

C.2 Additional Details for Bardet-Biedl Analysis

Here we present additional results for the Bardet-Biedl Syndrome gene expression analysis

conducted in Section 8.1 of the main manuscript. Table 2 displays the 12 probes found

by SSGL. Table 3 displays the terms for which SSGL was enriched in a gene ontology

enrichment analysis.
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Probe ID Gene Symbol SSGL Norm Group Lasso Norm

1374131 at 0.034

1383749 at Phospho1 0.067 0.088

1393735 at 0.033 0.002

1379029 at Zfp62 0.074

1383110 at Klhl24 0.246

1384470 at Maneal 0.087 0.005

1395284 at 0.014

1383673 at Nap1l2 0.045

1379971 at Zc3h6 0.162

1384860 at Zfp84 0.008

1376747 at 0.489 0.002

1379094 at 0.220

Table 2: Probes found by SSGL on the Bardet-Biedl syndrome gene expression data set.

The probes which were also found by the Group Lasso have nonzero group norm values.

SSGL: enriched terms in gene ontology enrichment analysis

1 alpha-mannosidase activity

2 RNA polymerase II intronic transcription regulatory region sequence-specific DNA binding

3 mannosidase activity

4 intronic transcription regulatory region sequence-specific DNA binding

5 intronic transcription regulatory region DNA binding

Table 3: This table displays the terms for which SSGL was found to be enriched in a gene

ontology enrichment analysis, ordered by statistical significance.
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C.3 Additional Details for Analysis of NHANES Data

Here we will present additional results from the NHANES data analysis in Section 8.2 of the

main manuscript. Here, the aim is to identify environmental exposures that are associated

with leukocyte telomere length. In the NHANES data, we have measurements from 18

persistent organic pollutants. Persistent organic pollutants are toxic chemicals that have

potential to adversely affect health. They are known to remain in the environment for long

periods of time and can travel through wind, water, or even the food chain. Our data set

consists of 11 polychlorinated biphenyls (PCBs), three Dioxins, and four Furans. We want

to understand the impact that these can have on telomere length, and to understand if any

of these pollutants interact in their effect on humans.

The data also contains additional covariates that we will adjust for such as age, a

squared term for age, gender, BMI, education status, race, lymphocyte count, monocyte

count, cotinine level, basophil count, eosinophil count, and neutrophil count. To better

understand the data set, we have shown the correlation matrix between all organic pollu-

tants and covariates in Figure 6. We can see that the environmental exposures are all fairly

positively correlated with each other. In particular, the PCBs are highly correlated among

themselves. The correlation across chemical types, such as the correlation between PCBs

and Dioxins or Furans are lower, though still positively correlated. The correlation between

the covariates that we place into our model and the exposures is generally extremely low,

and the correlation among the individual covariates is also low, with the exception of a few

blood cell types as seen in the upper right of Figure 6.

As discussed in Section 8.2 of the main manuscript, when we fit the SSGL model to this

data set, we identified four main effects (plotted in Figure 3 of the main manuscript). Our

model also identified six interactions as having nonzero parameter estimates. The identified
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Figure 6: Correlation matrix among the 18 exposures and 18 demographic variables used

in the final analysis for the NHANES study.

interactions are PCB 10 - PCB 7, Dioxin 1 - PCB 11, Dioxin 2 - PCB 2, Dioxin 2 - Dioxin

1, Furan 1 - PCB 10, and Furan 4 - Furan 3. We see that there are interactions both within

a certain type of pollutant (Dioxin and Dioxin, etc.) and across pollutant types (Furan

and PCB).

Lastly, looking at Figure 3 of the main manuscript, we can see that the exposure

response curves for the four identified main effects are relatively linear, particularly for

PCB 11 and Furan 1. With this in mind, we also ran our SSGL model with one degree

of freedom splines for each main effect. Note that this does not require a model that
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handles grouped covariate structures as the main effects and interactions in this case are

both single parameters. Cross-validated error from the model with one degree of freedom is

nearly identical to the model with two degrees of freedom, though the linear model selects

far more terms. The linear model selects six main effect terms and 20 interaction terms.

As the two models provide similar predictive performance but the model with two degrees

of freedom is far more parsimonious, we elect to focus on the model with two degrees of

freedom.

D Proofs of Main Results

D.1 Preliminary Lemmas

Before proving the main results in the paper, we first prove the following lemmas.

Lemma D.1. Suppose that βg ∈ Rmg follows a group lasso density indexed by λ, i.e.

βg ∼ Ψ(βg|λ). Then

E(‖βg‖2
2) =

mg(mg + 1)

λ2
.

Proof. The group lasso density, Ψ(βg|λ), is the marginal density of a scale mixture,

βg ∼ Nmg(0, τImg), τ ∼ G
(
mg + 1

2
,
λ2

2

)
.

Therefore, using iterated expectations, we have

E(‖βg‖2
2) = E

[
E(‖βg‖2

2 | τ)
]

= mgE(τ)

=
mg(mg + 1)

λ2
.
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Lemma D.2. Suppose σ2 > 0, σ2
0 > 0. Then for any εn ∈ (0, 1) such that εn → 0 as

n→∞, we have for sufficiently large n,

{
|σ2 − σ2

0| ≥ 4σ2
0εn
}
⊆
{
σ2

σ2
0

>
1− εn
1− εn

or
σ2

σ2
0

<
1− εn
1 + εn

}
.

Proof. For large n, εn < 1/2, so 2εn/(1− εn) < 4εn,−2εn/(1 + εn) > −4εn, and thus,

|σ2 − σ2
0| ≥ 4σ2

0εn ⇒ (σ2 − σ2
0)/σ2

0 ≥ 4εn or (σ2 − σ2
0)/σ2

0 ≤ −4εn

⇒ σ2

σ2
0

− 1 >
2εn

1− εn
or

σ2

σ2
0

− 1 < − 2εn
1 + εn

⇒ σ2

σ2
0

>
1 + εn
1− εn

or
σ2

σ2
0

<
1− εn
1 + εn

,

and hence,

|σ2 − σ2
0| ≥ 4σ2

0εn ⇒
σ2

σ2
0

>
1 + εn
1− εn

or
σ2

σ2
0

<
1− εn
1 + εn

.

.

Lemma D.3. Suppose that a vector z ∈ Rm can be decomposed into subvectors, z =

[z′1, . . . ,z
′
d], where

∑d
i=1|zi| = m and |zi| denotes the length of zi. Then ‖z‖2 ≤

∑d
i=1‖zi‖2.

Proof. We have

‖z‖2 =
√
z2

11 + . . .+ z2
1|z1| + . . .+ z2

d1 + . . .+ zd|zd|

≤
√
z2

11 + . . .+ z2
1|z1| + . . .+

√
z2
d1 + . . .+ zd|zd|

= ‖z1‖2 + . . .+ ‖zd‖2.
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D.2 Proofs for Section 3

Proof of Proposition 2. This result follows from an adaptation of the arguments of Zhang

and Zhang (2012). The group-specific optimization problem is:

β̂g = arg maxβg

{
−1

2
‖zg − βg‖2

2 + σ2penS(β|θ)
}
. (D.1)

We first note that the optimization problem (D.1) is equivalent to maximizing the objective

L(βg) = −1

2
‖zg − βg‖2

2 + σ2penS(β|θ) +
1

2
‖zg‖2

2 (D.2)

= ‖βg‖2

[
βTg zg

‖β‖2

−
(
‖βg‖2

2
− σ2penS(β|θ)

‖βg‖2

)]
(D.3)

= ‖βg‖2

[
‖zg‖2 cosϕ−

(
‖βg‖2

2
− σ2penS(β|θ)

‖βg‖2

)]
(D.4)

where ϕ is the angle between zg and βg. Then, when ‖zg‖2 < ∆, the second factorized

term of (D.4) is always less than zero, and so β̂g = 0mg must be the global maximizer of

L. On the other hand, when the global maximizer β̂g = 0mg , then the second factorized

term must always be less than zero, otherwise β̂g = 0mg would no longer be the global

maximizer and so ‖zg‖2 < ∆.

Proof of Lemma 3. We have

E[θ|β̂] =

∫ 1

0
θa(1− θ)b−1(1− θz)G−q̂

∏q̂
g=1(1− θxg)dθ∫ 1

0
θa−1(1− θ)b−1(1− θz)G−q̂

∏q̂
g=1(1− θxg)dθ

. (D.5)

When λ0 →∞, we have z → 1 and xg → −∞ for all g = 1, . . . , q̂. Hence,

lim
λ0→∞

E[θ|β̂] = lim
z→1

lim
xg→−∞

∫ 1

0
θa(1− θ)b+G−q̂−1

∏q̂
g=1(1− θxg)∫ 1

0
θa−1(1− θ)b−1(1− θz)G−q̂

∏q̂
g=1(1− θxg)

(D.6)

=

∫ 1

0
θa+q̂(1− θ)b+G−q̂−1dθ∫ 1

0
θa+q̂−1(1− θ)b+G−q̂−1dθ

(D.7)
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=
a+ q̂

a+ b+G
. (D.8)

D.3 Proofs for Section 6

In this section, we use proof techniques from Ning et al. (2019), Song and Liang (2017), and

Wei et al. (2020) rather than the ones in Ročková and George (2018). However, none of

these other papers considers both continuous spike-and-slab priors for groups of regression

coefficients and an independent prior on the unknown variance.

Proof of Theorem 2. Our proof is based on first principles of verifying Kullback-Leibler

(KL) and testing conditions (see e.g., Ghosal et al. (2000)). We first prove (6.3) and (6.5).

Part I: Kullback-Leibler conditions. Let f ∼ Nn(Xβ, σ2In) and f0 ∼ Nn(Xβ0, σ
2
0In),

and let Π(·) denote the prior (6.2). We first show that for our choice of εn =
√
s0 logG/n,

Π
(
K(f0, f) ≤ nε2n, V (f0, f) ≤ nε2n

)
≥ exp(−C1nε

2
n), (D.9)

for some constant C1 > 0, where K(·, ·) denotes the KL divergence and V (·, ·) denotes the

KL variation. The KL divergence between f0 and f is

K(f0, f) =
1

2

[
n

(
σ2

0

σ2

)
− n− n log

(
σ2

0

σ2

)
+
‖X(β − β0)‖2

2

σ2

]
, (D.10)

and the KL variation between f0 and f is

V (f0, f) =
1

2

[
n

(
σ2

0

σ2

)2

− 2n

(
σ2

0

σ2

)
+ n

]
+

σ2
0

(σ2)2
‖X(β − β0)‖2

2. (D.11)
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Define the two events A1 and A2 as follows:

A1 =

{
σ2 : n

(
σ2

0

σ2

)
− n− n log

(
σ2

0

σ2

)
≤ nε2n, n

(
σ2

0

σ2

)2

− 2n

(
σ2

0

σ2

)
+ n ≤ nε2n

}
(D.12)

and

A2 =

{
(β, σ2) :

‖X(β − β0)‖2
2

σ2
≤ nε2n,

σ2
0

(σ2)2
‖X(β − β0)‖2

2 ≤ nε2n/2

}
. (D.13)

Following from (D.9)-(D.13), we may write Π(K(f0, f) ≤ ε2n, V (f0, f) ≤ ε2n) = Π(A2|A1)Π(A1).

We derive lower bounds for Π(A1) and Π(A2|A1) separately. Noting that we may rewrite

A1 as

A1 =

{
σ2 :

σ2
0

σ2
− 1− log

(
σ2

0

σ2

)
≤ ε2n,

(
σ2

0

σ2
− 1

)2

≤ ε2n

}
,

and expanding log(σ2
0/σ

2) in the powers of 1 − σ2
0/σ

2 to get σ2
0/σ

2 − 1 − log(σ2
0/σ

2) ∼

(1− σ2
0/σ

2)2/2, it is clear that A1 ⊃ A?1, where A?1 = {σ2 : σ2
0/(εn + 1) ≤ σ2 ≤ σ2

0}. Thus,

since σ2 ∼ IG(c0, d0), we have for sufficiently large n,

Π(A1) ≥ Π(A?1) �
∫ σ2

0

σ2
0/(εn+1)

(σ2)−c0−1e−d0/σ
2

dσ2

≥ (σ2
0)−c0−1e−d0(εn+1)/σ2

0 . (D.14)

Thus, from (D.14), we have

− log Π(A1) . εn + 1 . nε2n, (D.15)

since nε2n →∞. Next, we consider Π(A2|A1). We have

σ2
0

(σ2)2
‖X(β − β0)‖2

2 =

∣∣∣∣∣∣∣∣X(β − β0)

σ

∣∣∣∣∣∣∣∣2
2

(
σ2

0

σ2
− 1

)
+

∣∣∣∣∣∣∣∣X(β − β0)

σ

∣∣∣∣∣∣∣∣2
2

,
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and conditional on A1, we have that the previous display is bounded above by∣∣∣∣∣∣∣∣X(β − β0)

σ

∣∣∣∣∣∣∣∣2
2

(εn + 1) <
2

σ2
‖X(β − β0)‖2

2,

for large n (since εn < 1 when n is large). Since A1 ⊃ A?1, where A?1 was defined earlier, the

left-hand side of both expressions in (D.13) can be bounded above by a constant multiple

of ‖X(β − β0)‖2
2, conditional on A1. Therefore, for some constant b1 > 0, Π(A2|A1) is

bounded below by

Π(A2|A1) ≥ Π

(
‖X(β − β0)‖2

2 ≤
b2

1nε
2
n

2

)
≥ Π

(
‖β − β0‖2

2 ≤
b2

1ε
2
n

2knα−1

)
≥
∫ 1

0

{
ΠS0

(
‖βS0 − β0S0‖2

2 ≤
b2

1ε
2
n

4knα

∣∣∣∣θ)}{ΠSc0

(
‖βSc0‖

2
2 ≤

b2
1ε

2
n

4knα

∣∣∣∣θ)} dπ(θ), (D.16)

where we used Assumption (A3) in the second inequality, and in the third inequality, we

used the fact that conditional on θ, the SSGL prior is separable, so π(β|θ) = πS0(β|θ)πSc0(β|θ).

We proceed to lower-bound each bracketed integrand term in (D.16) separately. Changing

the variable β−β0 → b and using the fact that πS0(β|θ) > θs0
∏

g∈S0

[
Cgλ

mg
1 e−λ1‖βg‖2

]
and

‖z‖2 ≤ ‖z‖1 for any vector z, we have as a lower bound for the first term in (D.16),

θs0e−λ1‖βS0‖2
∏
g∈S0

Cg

{∫
‖bg‖1≤ b1εn

2s0
√
knα

λ
mg
1 e−λ1‖bg‖1dbg

}
. (D.17)

Each of the integral terms in (D.17) is the probability of the first mg events of a Poisson

process happening before time b1εn/2s0

√
knα. Using similar arguments as those in the

proof of Lemma 5.1 of Ning et al. (2019), we obtain as a lower bound for the product of

integrals in (D.17),∏
g∈S0

Cg

{∫
‖bg‖1≤ b1εn

2s0
√
knα

λ
mg
1 e−λ1‖bg‖1dbg

}
≥
∏
g∈S0

Cge
−λ1b1εn/2s0

√
knα 1

mg!

(
λ1b1εn

s0

√
knα

)mg
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= e−λ1b1εn/2
√
knα

∏
g∈S0

Cg
mg!

(
λ1b1εn

s0

√
knα

)mg
. (D.18)

Combining (D.17)-(D.18), we have the following lower bound for the first bracketed term

in (D.16):

θs0e−λ1‖βS0‖2e−λ1b1εn/2
√
knα

∏
g∈S0

Cg
mg!

(
λ1b1εn

s0

√
knα

)mg
. (D.19)

Now, noting that πSc0(β|θ) > (1−θ)G−s0
∏

g∈Sc0

[
Cgλ

mg
0 e−λ0‖βg‖2

]
, we further bound the sec-

ond bracketed term in (D.16) from below. Let π̌(·) denote the density, π̌(βg) = Cgλ
mg
0 e−λ0‖βg‖2 .

We have

ΠSc0

(
‖βSc0‖

2
2 ≤

b2
1ε

2
n

4knα

∣∣∣∣θ) > (1− θ)G−s0
∏
g∈Sc0

Π̌

(
‖βg‖2

2 ≤
b2

1ε
2
n

4knα(G− s0)

)

≥ (1− θ)G−s0
∏
g∈Sc0

[
1− 4knα(G− s0)Eπ̌ (‖βg‖2

2)

b2
1ε

2
n

]

= (1− θ)G−s0
∏
g∈Sc0

[
1− 4knα(G− s0)mg(mg + 1)

λ2
0b

2
1ε

2
n

]

≥ (1− θ)G−s0
[
1− 4knαGmmax(mmax + 1)

λ2
0b1ε2n

]G−s0
, (D.20)

where we used an application of the Markov inequality and Lemma D.1 in the second line.

Combining (D.19)-(D.20) gives as a lower-bound for (D.16),

Π(A2|A1) ≥

{
e−λ1‖βS0‖2e−λ1b1εn/2

√
knα

∏
g∈S0

Cg
mg!

(
λ1b1εn

s0

√
knα

)mg}

×

{∫ 1

0

θs0(1− θ)G−s0
[
1− 4knαGmmax(mmax + 1)

λ2
0b1ε2n

]G−s0
dπ(θ)

}
(D.21)

Let us consider the second bracketed term in (D.21) first. By assumption, λ0 = (1− θ)/θ.

Further, λ2
0 = (1−θ)2/θ2 is monotonically decreasing in θ for θ ∈ (0, 1). Hence, for constant
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c > 2 in the B(1, Gc) prior on θ, a lower bound for the second bracketed term in (D.21) is∫ 1/(Gc+1)

1/(2Gc+1)

θs0(1− θ)G−s0
[
1− 4knαGmmax(mmax + 1)

λ2
0b1ε2n

]G−s0
dπ(θ)

≥ (2Gc + 1)−s0
[
1− 4knαGmmax(mmax + 1)

G2cb1ε2n

]G−s0 ∫ 1/(Gc+1)

1/(2Gc+1)

(1− θ)G−s0dπ(θ)

& (2Gc + 1)−s0
[
1− 1

G− s0

]G−s0 ∫ 1/(Gc+1)

1/(2Gc+1)

(1− θ)G−s0dπ(θ)

� (2Gc + 1)−s0G−c
∫ 1/(Gc+1)

1/(2Gc+1)

(1− θ)Gc+G−s0−1dθ

= (2Gc + 1)−s0G−c(Gc +G− s0)−1

[(
1− 1

2Gc + 1

)Gc+G−s0
−
(

1− 1

Gc + 1

)Gc+G−s0]
& (2Gc + 1)−s0G−c(Gc +G− s0)−1, (D.22)

where in the third line, we used our assumptions about the growth rates for mmax, G, and

s0 in Assumptions (A1)-(A2) and the fact that c > 2. In the fourth line, we used the fact

that (1− 1/x)x → e−1 as x→∞ and θ ∼ B(1, Gc). In the sixth line, we used the fact that

the bracketed term in the fifth line can be bounded below by e−1− e−2 for sufficiently large

n.

Combining (D.21)-(D.22), we obtain for sufficiently large n,

− log Π(A2|A1) . λ1‖β0S0‖2 +
λ1b1εn

2
√
knα

+
∑
g∈S0

log(mg!)−
∑
g∈S0

logCg

+
∑
g∈S0

mg log

(
s0

√
knα

λ1b1εn

)
+ s0 log(2Gc + 1) + c logG

+ log(Gc +G− s0) (D.23)

We examine each of the terms in (D.23) separately. By Assumptions (A1) and (A5) and
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the fact that λ1 � 1/n, we have

λ1‖β0S0‖2 ≤ λ1

√
s0mmax‖β0S0‖∞ . s0 logG . nε2n,

and

λ1b1εn

2
√
knα

. εn . nε2n.

Next, using the facts that x! ≤ xx for x ∈ N and Assumption (A1), we have∑
g∈S0

log(mg!) ≤ s0 log(mmax!) ≤ s0mmax log(mmax) ≤ s0mmax log n . nε2n.

Using the fact that the normalizing constant, Cg = 2−mgπ−(mg−1)/2[Γ((mg + 1)/2)]−1, we

also have ∑
g∈S0

− logCg =
∑
g∈S0

{
mg log 2 +

(
mg − 1

2

)
log π + log

[
Γ

(
mg + 1

2

)]}
≤ s0mmax(log 2 + log π) +

∑
g∈S0

log(mg!)

. s0mmax(log 2 + log π) + s0mmax log n

. s0 logG

. nε2n,

where we used the fact that Γ((mg + 1)/2) ≤ Γ(mg + 1) = mg!. Finally, since λ1 � 1/n

and using Assumption (A1) that mmax = O(logG/ log n), we have

∑
g∈S0

mg log

(
s0

√
knα

λ1b1εn

)
. s0mmax log

(
s0n

α/2+1
√
k

b1ε2n

)

= s0mmax log

(
nα/2+2

√
k

b1 logG

)
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. s0mmax log n

. s0 logG

. nε2n.

Finally, it is clear by the definition of nε2n and the fact that c > 2 is a constant that

s0 log(2Gc + 1) + c logG+ log(Gc +G− s0) � s0 logG = nε2n.

Combining all of the above, together with (D.23), we have

− log Π(A2|A1) . nε2n. (D.24)

By (D.15) and (D.24), we may choose a large constant C1 > 0, so that

Π(A2|A1)Π(A1) & exp(−C1nε
2
n/2) exp(−C1nε

2
n/2) = exp(−C1nε

2
n),

so the Kullback-Leibler condition (D.9) holds.

Part II: Testing conditions. To complete the proof, we show the existence of a sieve

Fn such that

Π(F cn) ≤ exp(−C2nε
2
n), (D.25)

for positive constant C2 > C1 + 2, where C1 is the constant from (D.9), and a sequence of

test functions φn ∈ [0, 1] such that

Ef0φn ≤ e−C4nε2n , (D.26)

and

sup

f ∈ Fn : ‖β − β0‖2 ≥ (3 +
√
ν1)σ0εn,

or |σ2 − σ2
0| ≥ 4σ2

0εn

Ef (1− φn) ≤ e−C4nε2n , (D.27)
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for some C4 > 0, where ν is from Assumption (A4). Recall that ωg ≡ ωg(λ0, λ1, θ) =

1
λ0−λ1 log

[
1−θ
θ

λ
mg
0

λ
mg
1

]
. Choose C3 ≥ C1 + 2 + log 3, and consider the sieve,

Fn =
{
f : |γ(β)| ≤ C3s0, 0 < σ2 ≤ GC3s0/c0

}
, (D.28)

where c0 is from IG(c0, d0) prior on σ2 and |γ(β)| denotes the generalized dimensionality

(6.6).

We first verify (D.25). We have

Π(F cn) ≤ Π (|γ(β)| > C3s0) + Π
(
σ2 > GC3s0/c0

)
. (D.29)

We focus on bounding each of the terms in (D.29) separately. First, let θ0 = C3s0 logG/Gc,

where c > 2 is the constant in the B(1, Gc) prior on θ. Similarly as in the proof of Theorem

6.3 in Ročková and George (2018), we have π(βg|θ) < 2θCgλ
mg
1 e−λ1‖βg‖2 for all ‖βg‖2 > ωg.

We have for any θ ≤ θ0 that

Π(|γ(β)| > C3s0|θ) ≤
∑

S:|S|>C3s0

2|S|θ
|S|
0

∫
‖βg‖2>ωg ;g∈S

Cgλ
mg
1 e−λ1‖βg‖2dβS

×
∫
‖βg‖2≤ωg ;g∈Sc

ΠSc(β)dβSc

.
∑

S:|S|>C3s0

θ
|S|
0 , (D.30)

where we used the assumption that λ1 � 1/n, the definition of ωg, and the fact that θ ≤ θ0

to bound the first integral term from above by
∏

g∈S(1/n)mg ≤ n−|S|, and we bounded the

second integral term above by one. We then have

Π(|γ(β)| > C3s0) =

∫ 1

0

Π(|γ(β)| > C3s0|θ)dπ(θ)

≤
∫ θ0

0

Π(|γ(β)| > C3s0|θ)dπ(θ) + Π(θ > θ0). (D.31)
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Note that since s0 = o(n/ logG) by Assumption (A1), G � n, and c > 2, we have

θ0 ≤ C3n/G
c < 1/G2 for sufficiently large n. Following from (D.30), we thus have that for

sufficiently large n, ∫ θ0

0

Π(|γ(β)| > C3s0|θ)dπ(θ) ≤
∑

S:|S|>C3s0

θ
|S|
0

≤
G∑

k=bC3s0c+1

(
G

k

)(
1

G2

)k

≤
G∑

k=bC3s0c+1

( e

kG

)k
<

G∑
k=bC3s0c+1

(
e

G(bC3s0c+ 1)

)k

=

(
e

G(bC3s0c+1)

)bC3s0c+1

−
(

e
G(bC3s0c+1)

)G+1

1− e
G(bC3s0c+1)

. G−(bC3s0c+1)

. exp
(
−C3nε

2
n

)
. (D.32)

where we used the inequality
(
G
k

)
≤ (eG/k)k in the third line of the display.

Next, since θ ∼ B(1, Gc), we have

Π(θ > θ0) = (1− θ0)G
c

=

(
1− C3s0 logG

Gc

)Gc
≤ e−C3s0 logG

= e−C3nε2n . (D.33)
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Combining (D.31)-(D.33), we have that

Π(|γ(β)| > C3s0) ≤ 2e−C3nε2n . (D.34)

Finally, we have as a bound for the second term in (D.29),

Π
(
σ2 > GC3s0/c0

)
=

∫ ∞
GC3s0/c0

dc00
Γ(c0)

(σ2)−c0−1e−d0/σ
2

dσ2

.
∫ ∞
GC3s0/c0

(σ2)−c0−1

� G−C3s0

. exp(−C3nε
2
n). (D.35)

Combining (D.29)-(D.35), we have

Π(F cn) ≤ 3 exp
(
−C3nε

2
n

)
= exp

(
−C3nε

2
n + log 3

)
,

and so given our choice of C3, (D.29) is asymptotically bounded from above by exp(−C2nε
2
n)

for some C2 ≥ C1 + 2. This proves (D.25).

We now proceed to prove (D.26). Our proof is based on the technique used in Song and

Liang (2017) with suitable modifications. For ξ ⊂ {1, . . . , G}, let Xξ denote the submatrix

of X with submatrices indexed by ξ, where |ξ| ≤ p̄ and p̄ is from Assumption (A4). Let

β̂ξ = (XT
ξ Xξ)

−1XT
ξ Y and β0ξ denote the subvector of β0 with groups indexed by ξ. Let

mξ =
∑

g∈ξmg, and let σ̂2
ξ = ‖Y −Xξβ̂ξ‖2

2/(n−mξ). Note that β̂ξ and σ̂2
ξ both exist and

are unique because of Assumptions (A1), (A2), and (A4) (which combined, gives us that

mξ = o(n)).

Let p̃ be an integer satisfying p̃ � s0 and p̃ ≤ p̄− s0, where p̄ is from Assumption (A4),

and the specific choice of p̃ will be given below. Recall that S0 is the set of true nonzero
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groups with cardinality s0 = |S0|. Similar to Song and Liang (2017), we consider the test

function φn = max{φ′n, φ̃n}, where

φ′n = max
ξ⊃S0,|ξ|≤p̃+s0

1
{
|σ̂2
ξ − σ2

0| ≥ σ2
0εn
}
, and

φ̃n = max
ξ⊃S0,|ξ|≤p̃+s0

1
{
‖β̂ξ − β0ξ‖2 ≥ σ0εn

}
.

(D.36)

Because of Assumption (A4), we have p̃ ≺ n and p̃ ≺ nε2n. Additionally, since εn = o(1),

we can use almost identical arguments as those used to establish (A.5)-(A.6) in the proof

of Theorem A.1 of Song and Liang (2017) to show that for any ξ satisfying ξ ⊃ S0, |ξ| ≤ p̃,

E(β0,σ2
0)1
{
|σ̂2
ξ − σ2

0| ≥ σ2
0εn
}
≤ exp(−c′4nε2n),

for some constant ĉ4 > 0, and for any ξ satisfying ξ ⊃ S0, |ξ| ≤ p̃,

E(β0,σ2
0)1
{
‖β̂ξ − β0ξ‖2 ≥ σ0εn

}
≤ exp(−c̃4nε

2
n),

for some c̃4 > 0. Using the proof of Theorem A.1 in Song and Liang (2017), we may then

choose p̃ = bmin{c′4, c̃4}nε2n/(2 logG)c, and then

Ef0φn ≤ exp(−č4nε
2
n), (D.37)

for some č4 > 0. Next, define the set,

C =
{
‖β − β0‖2 ≥ (3 +

√
ν1)σ0εn or σ2/σ2

0 > (1 + εn)/(1− εn)

or σ2/σ2
0 < (1− εn)/(1 + εn)} .

By Lemma D.2, we have

sup

f ∈ Fn : ‖β − β0‖2 ≥ (3 +
√
ν1)σ0εn,

or |σ2 − σ2
0| ≥ 4σ2

0εn

Ef (1− φn) ≤ sup
f∈Fn:(β,σ2)∈C

Ef (1− φn). (D.38)
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Similar to Song and Liang (2017), we consider C ⊂ Ĉ ∪ C̃, where

Ĉ = {σ2/σ2
0 > (1 + εn)/(1− εn) or σ2/σ2

0 < (1− εn)/(1 + εn)},

C̃ = {‖β − β0‖ ≥ (3 +
√
ν1)σ0εn and σ2 = σ2

0},

and so an upper bound for (D.38) is

sup
f∈Fn:(β,σ2)∈C

Ef (1− φn) = sup
f∈Fn:(β,σ2)∈C

Ef min{1− φ′n, 1− φ̃n}

≤ max

{
sup

f∈Fn:(β,σ2)∈Ĉ
Ef (1− φ′n), sup

f∈Fn:(β,σ2)∈C̃
Ef (1− φ̃n)

}
. (D.39)

Let ξ̃ = {g : ‖βg‖2 > ωg} ∪ S0, mξ̃ =
∑

g∈ξ̃mg, and ξ̃c = {1, . . . , G} \ ξ̃. For any f ∈ Fn
such that (β, σ2) ∈ Ĉ∪C̃, we must have then that |ξ̃| ≤ C3s0 +s0 ≤ p̄, by Assumption (A4).

By (D.33), the prior puts exponentially vanishing probability on values of θ > θ0 where

θ0 = C3s0 logG/Gc < 1/(G2 + 1) for large G. Since λ0 = (1− θ)/θ is monotonic decreasing

in θ, we have that with probability greater than 1− e−C3nε2n , λ0 ≥ G2. Combining this fact

with Assumption (A3) and using Fn in (D.28), we have that for any f ∈ Fn, (β, σ2) ∈ Ĉ∪C̃

and sufficiently large n,

‖Xξ̃cβξ̃c‖2 ≤
√
knα‖βξ̃c‖2

≤
√
knα

[
(G− |ξ̃|) max

g∈ξ̃c
ωg

]
≤
√
knα

{
G

λ0 − λ1

log

[
1− θ
θ

(
λ0

λ1

)mmax
]}

. min{
√
k, 1} ×

√
ν1

√
nσ0εn, (D.40)

where ν is from Assumption (A4). In the above display, we used Lemma D.3 in the second

inequality, while the last inequality follows from our assumptions on (θ, λ0, λ1) and mmax,
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so one can show that the bracketed term in the third line is asymptotically bounded above

by D
√
ν1

√
n1−ασ0εn for large n and any constant D > 0. Thus, using nearly identical

arguments as those used to prove Part I of Theorem A.1 in Song and Liang (2017), we have

sup
f∈Fn:(β,σ2)∈Ĉ

Ef (1− φ′n)

≤ sup
f∈Fn:(β,σ2)∈Ĉ

Pr
(
|χ2
n−mξ̃

(ζ)− (n−mξ̃)| ≥ (n−mξ̃)εn

)
≤ exp(−ĉ4nε

2
n), (D.41)

where the noncentrality parameter ζ satisfies ζ ≤ nε2nν1σ
2
0/16σ2, and the last inequality

follows from the fact that the noncentral χ2 distribution is subexponential and Bernstein’s

inequality (see Lemmas A.1 and A.2 in Song and Liang (2017)).

Using the arguments in Part I of the proof of Theorem A.1 in Song and Liang (2017),

we also have that for large n,

sup
f∈Fn:(β,σ2)∈C̃

Ef (1− φ̃n)

≤ sup
f∈Fn:(β,σ2)∈Ĉ

Pr
(
‖(XT

ξ̃
Xξ̃)

−1XT
ξ̃
ε‖2 ≥

[
‖βξ̃ − β0ξ̃‖2−σ0εn−

‖(XT
ξ̃
Xξ̃)

−1XT
ξ̃
Xξ̃cβξ̃c‖2

]
/σ
)

≤ sup
f∈Fn:(β,σ2)∈Ĉ

Pr
(
‖(XT

ξ̃
Xξ̃)

−1XT
ξ̃
ε‖2 ≥ εn

)
≤ sup

f∈Fn:(β,σ2)∈Ĉ
Pr(χ2

|ξ̃| ≥ nν1ε
2
n)

≤ exp(−c̃4nε
2
n), (D.42)

where the second inequality in the above display holds since ‖βξ̃ − β0ξ̃‖2 ≥ ‖β − β0‖2 −

‖βξ̃c‖2, and since (D.40) can be further bounded from above by
√
knα
√
ν1σ0εn and thus
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‖βξ̃c‖ ≤
√
ν1σ0εn. Therefore, we have for f ∈ Fn, (β, σ2) ∈ C̃,

‖βξ̃ − β0ξ̃‖2 ≥ (3 +
√
ν1)σ0εn −

√
ν1σ0εn = 3σ0εn,

while by Assumption (A4) and (D.40), we also have

‖(XT
ξ̃
Xξ̃)

−1XT
ξ̃
Xξ̃cβξ̃c‖2 ≤

√
λmax

(
(XT

ξ̃
Xξ̃)

−1
)
‖Xξ̃cβξ̃c‖2

≤
(√

1/nν1

)
(
√
nν1σ0εn) = σ0εn,

and then we used the fact that on the set C̃, σ = σ0. The last three inequalities in (D.42)

follow from Assumption (A4), the fact that |ξ̃| ≤ p̄ ≺ nε2n, and the fact that for all m > 0,

Pr(χ2
m ≥ x) ≤ exp(−x/4) whenever x ≥ 8m. Altogether, combining (D.38)-(D.42), we

have that

sup

f ∈ Fn : ‖β − β0‖2 ≥ (3 +
√
ν)σ0εn,

or |σ2 − σ2
0| ≥ 4σ2

0εn

Ef (1− φn) ≤ exp
(
−min{ĉ4, c̃4}nε2n

)
, (D.43)

where ĉ4 > 0 and c̃4 > 0 are the constants from (D.41) and (D.42).

Now set C4 = min{ĉ4, c̃4, č4}, where č4 is the constant from (D.37). By and (D.37) and

(D.43), this choice of C4 will satisfy both testing conditions (D.26) and (D.27).

Since we have verified (D.9) and (D.25)-(D.27) for εn =
√
s0 logG/n, we have

Π

(
β : ‖β − β0‖2 ≥ (3 +

√
ν)σ0εn

∣∣∣∣Y )→ 0 a.s. P0 as n,G→∞,

and

Π
(
σ2 : |σ2 − σ2

0| ≥ 4σ2
0εn|Y

)
→ 0 as n→∞, a.s. P0 as n,G→∞,
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i.e. we have proven (6.3) and (6.5).

Part III. Posterior contraction under prediction error loss. The proof is very

similar to the proof of (6.3). The only difference is the testing conditions. We use the same

sieve Fn as that in (D.28) so that (D.25) holds, but now, we need to show the existence of

a different sequence of test functions τn ∈ [0, 1] such that

Ef0τn ≤ e−C4nε2n , (D.44)

and

sup

f ∈ Fn : ‖Xβ −Xβ0‖2 ≥M2σ0

√
nεn,

or |σ2 − σ2
0| ≥ 4σ2

0εn

Ef (1− τn) ≤ e−C4nε2n . (D.45)

Let p̃ be the same integer from (D.36) and consider the test function τn = max{τ ′n, τ̃n},

where

τ ′n = max
ξ⊃S0,|ξ|≤p̃+s0

1
{
|σ̂2
ξ − σ2

0| ≥ σ2
0εn
}
, and

τ̃n = max
ξ⊃S0,|ξ|≤p̃+s0

1
{
‖Xξβ̂ξ −Xξβ0ξ‖2 ≥ σ0

√
nεn

}
.

(D.46)

Using Assumption (A4) that for any ξ ⊂ {1, . . . , G} such that |ξ| ≤ p̄, λmax(XT
ξ Xξ) ≤ nν2

for some ν2 > 0, we have that

‖Xξβ̂ξ −Xξβ0ξ‖2≤
√
nν2‖β̂ξ − β0ξ‖2,

and so

Pr
(
‖Xξβ̂ξ −Xξβ0ξ‖2≥ σ0

√
nεn

)
≤ Pr

(
‖β̂ξ − β0ξ‖2≥ ν

−1/2
2 σ0εn

)
.

Therefore, using similar steps as those in Part II of the proof, we can show that our chosen

sequence of tests τn satisfies (D.44) and (D.45). We thus arrive at

Π

(
β : ‖β − β0‖2 ≥M2σ0εn

∣∣∣∣Y )→ 0 a.s. P0 as n,G→∞,
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i.e. we have proven (6.4).

Proof of Theorem 3. According to Part I of the proof of Theorem 2, we have that for

εn =
√
s0 logG/n,

Π
(
K(f0, f) ≤ nε2n, V (f0, f) ≤ nε2n

)
≥ exp

(
−Cnε2n

)
for some C > 0. Thus, by Lemma 8.10 of Ghosal and van der Vaart (2017), there exist

positive constants C1 and C2 such that the event,

En =

{∫ ∫
f(Y )

f0(Y )
dΠ(β)dΠ(σ2) ≥ e−C1nε2n

}
, (D.47)

satisfies

P0(Ec
n) ≤ e−(1+C2)nε2n . (D.48)

Define the set T = {β : |γ(β)| ≤ C3s0}, where we choose C3 > 1 +C2. We must show that

E0Π(T c|Y )→ 0 as n→∞. The posterior probability Π(T c|Y ) is given by

Π(T c|Y ) =

∫ ∫
T c

f(Y )

f0(Y )
dΠ(β)dΠ(σ2)∫ ∫

f(Y )

f0(Y )
dΠ(β)dΠ(σ2)

. (D.49)

By (D.48), the denominator of (D.49) is bounded below by e−(1+C2)nε2n . For the numerator

of (D.49), we have as an upper bound,

E0

(∫ ∫
T c

f(Y )

f0(Y )
dΠ(β)Π(σ2)

)
≤
∫
T c
dΠ(β) = Π (|γ(β)| > C3s0) . (D.50)

Using the same arguments as (D.30)-(D.34) in the proof of Theorem 2, we can show that

Π (|γ(β)| > C3s0) ≺ e−C3nε2n . (D.51)

36



Combining (D.47)-(D.50), we have that

E0Π (T c|Y ) ≤ E0Π(T c|Y )1En + P0(Ec
n)

< exp
(
(1 + C2)nε2n − C3nε

2
n

)
+ o(1)

→ 0 as n,G→∞,

since C3 > 1 + C2. This proves (6.8).

Proof of Theorem 4. Let f0j(Xj) be an n× 1 vector with ith entry equal to f0j(Xij). Note

that proving posterior contraction with respect to the empirical norm (6.11) is equivalent

to proving that

Π

(
β : ‖X̃β −

p∑
j=1

f0j(Xj)‖2 ≥ M̃1

√
nεn

∣∣∣∣Y
)
→ 0 a.s. P̃0 as n, p→∞, (D.52)

so to prove the theorem, it suffices to prove (D.52). Let f ∼ Nn(X̃β, σ2In) and f0 ∼

Nn(X̃β0 + δ, σ2
0In), and let Π(·) denote the prior (6.2). Similar to the proof for Theorem

2, we show that for our choice of ε2n = s0 log p/n+ s0n
−2κ/(2κ+1) and some constant C1 > 0,

Π
(
K(f0, f) ≤ nε2n, V (f0, f) ≤ nε2n

)
≥ exp(−C1nε

2
n), (D.53)

and the existence of a sieve Fn such that

Π(F cn) ≤ exp(−C2nε
2
n), (D.54)

for positive constant C2 > C1 + 2, and a sequence of test functions φn ∈ [0, 1] such that

Ef0φn ≤ e−C4nε2n , (D.55)
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and

sup

f ∈ Fn : ‖X̃β −
∑p

j=1 f0j(Xj)‖2 ≥ c̃0σ0

√
nεn,

or |σ2 − σ2
0| ≥ 4σ2

0εn

Ef (1− φn) ≤ e−C4nε2n , (D.56)

for some C4 > 0 and c̃0 > 0.

We first verify (D.53). The KL divergence between f0 and f is

K(f0, f) =
1

2

[
n

(
σ2

0

σ2

)
− n− n log

(
σ2

0

σ2

)
+
‖X̃(β − β0)− δ‖2

2

σ2

]
, (D.57)

and the KL variation between f0 and f is

V (f0, f) =
1

2

[
n

(
σ2

0

σ2

)2

− 2n

(
σ2

0

σ2

)
+ n

]
+

σ2
0

(σ2)2
‖X̃(β − β0)− δ‖2

2. (D.58)

Define the two events Ã1 and Ã2 as follows:

Ã1 =

{
σ2 : n

(
σ2

0

σ2

)
− n− n log

(
σ2

0

σ2

)
≤ nε2n, n

(
σ2

0

σ2

)2

− 2n

(
σ2

0

σ2

)
+ n ≤ nε2n

}
(D.59)

and

Ã2 =

{
(β, σ2) :

‖X̃(β − β0)− δ‖2
2

σ2
≤ nε2n,

σ2
0

(σ2)2
‖X̃(β − β0)− δ‖2

2 ≤ nε2n/2

}
. (D.60)

Following from (D.57)-(D.60), we have Π(K(f0, f) ≤ nε2n, V (f0, f) ≤ nε2n) = Π(Ã2|Ã1)Π(Ã1).

Using the steps we used to prove (D.15) in part I of the proof of Theorem 2, we have

Π(Ã1) & exp(−C1nε
2
n/2), (D.61)

for some sufficiently large C1 > 0. Following similar reasoning as in the proof of Theorem

2, we also have for some b2 > 0,

Π
(
Ã2|Ã1

)
≥ Π

(
‖X̃(β − β0)− δ‖2

2 ≤
b2

2nε
2
n

2

)
. (D.62)
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Using Assumptions (B3) and (B6), we then have

‖X̃(β − β0)− δ‖2
2 ≤

(
‖X̃(β − β0)‖2 + ‖δ‖2

)2

≤ 2‖X̃(β − β0)‖2
2 + 2‖δ‖2

2

. 2

(
nk1‖β − β0‖2

2 +
k1b

2
2ns0d

−2κ

4

)
� 2n

(
‖β − β0‖2

2 +
b2

2s0d
−2κ

4

)
,

and so (D.62) can be asymptotically lower bounded by

Π

(
‖β − β0‖2

2 +
b2

2s0d
−2κ

4
≤ b2

2ε
2
n

4

)
= Π

(
‖β − β0‖2

2 ≤
b2

2

4

(
ε2n − s0n

−2κ/(2κ+1)
))

,

where we used Assumption (B1) that d � n1/(2κ+1). Using very similar arguments as those

used to prove (D.24), this term can also be lower bounded by exp(−C1nε
2
n/2). Altogether,

we have

Π(Ã2|Ã1) & exp(−C1ε
2
n/2). (D.63)

Combining (D.61) and (D.63), we have that (D.53) holds. To verify (D.54), we choose

C3 ≥ C1 + 2 + log 3 and use the same sieve Fn as the one we employed in the proof of

Theorem 2 (eq. (D.28)), and then (D.54) holds for our choice of Fn.

Finally, we follow the recipe of Wei et al. (2020) and Song and Liang (2017) to construct

our test function φn which will satisfy both (D.55) and (D.56). For ξ ⊂ {1, . . . , p}, let X̃ξ

denote the submatrix of X̃ with submatrices indexed by ξ, where |ξ| ≤ p̄ and p̄ is from

Assumption (B4). Let β̂ξ = (X̃T
ξ X̃ξ)

−1X̃T
ξ Y and β0ξ denote the subvector of β0 with

basis coefficients appearing in ξ. Then the total number of elements in β̂ξ is d|ξ|. Finally,
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let σ̂2
ξ = Y T (In −Hξ)Y /(n − d|ξ|), where Hξ = X̃ξ(X̃

T
ξ X̃ξ)

−1X̃T
ξ is the hat matrix for

the subgroup ξ.

Let p̃ be an integer satisfying p̃ � s0 and p̃ ≤ p̄ − s0, where p̄ is from Assumption

(B4) and the specific choice for p̃ will be given later. Recall that S0 is the set of true

nonzero groups with cardinality s0 = |S0|. Similar to Wei et al. (2020), we consider the

test function, φn = max{φ′n, φ̃n}, where

φ′n = max
ξ⊃S0,|ξ|≤p̃+s0

1
{
|σ̂2
ξ − σ2

0| ≥ c′0σ
2
0εn
}
, and

φ̃n = max
ξ⊃S0,|ξ|≤p̃+s0

1

{∣∣∣∣∣∣∣∣X̃β̂ξ −∑
j∈ξ

f0j(Xj)

∣∣∣∣∣∣∣∣
2

≥ c̃0σ0

√
nεn

}
,

(D.64)

for some positive constants c′0 and c̃0. Using Assumptions (B1) and (B4), we have that for

any ξ in our test φn, d|ξ| ≤ d(p̃ + s0) ≤ dp̄ ≺ nε2n. Using essentially the same arguments

as those in the proof for Theorem 4.1 in Wei et al. (2020), we have that for any ξ which

satisfies ξ ⊃ S0 so that |ξ| ≤ p̃+ s0,

E(β0,σ2
0)1
{
|σ̂2
ξ − σ2

0| ≥ c′0εn
}
≤ exp(−c′4nε2n), (D.65)

for some c′′0 > 0. By Assumption (B3), we also have∣∣∣∣∣∣∣∣X̃β̂ − p∑
j=1

f0j(Xj)

∣∣∣∣∣∣∣∣
2

= ‖X̃(β̂ − β0)− δ‖2

≤
√
nk1‖β̂ − β0‖2 + ‖δ‖2,

and using the fact that ‖δ‖2 .
√
ns0d

−κ . c̃0σ0

√
nεn/2 (by Assumptions (B1) and (B6)),

we have that for any ξ such that ξ ⊃ S0, |ξ| ≤ p̃+ s0,

E(β0,σ2
0)1

{∣∣∣∣∣∣∣∣X̃β̂ − p∑
j=1

f0j(Xj)

∣∣∣∣∣∣∣∣
2

≥ c̃0σ0

√
nεn

}
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≤ E(β0,σ2
0)

{
‖β̂ − β0‖2 ≥ c̃0σ0εn/2

√
k1

}
≤ exp(−c̃4nε

2
n),

for some c̃4 > 0, where we used the proof of Theorem A.1 in Song and Liang (2017) to

arrive at the final inequality. Again, as in the proof of Theorem A.1 of Song and Liang

(2017), we choose p̃ = bmin{c′4, c̃4}nε2n/(2 log p)c, and then

Ef0φn ≤ exp(−č4nε
2
n), (D.66)

for some č4 > 0. Next, we define the set,

C =
{
‖X̃β −

∑p
j=1 f0j(Xj)‖2 ≥ c̃0σ0

√
nεn or σ2/σ2

0 > (1 + εn)/(1− εn)

or σ2/σ2
0 < (1− εn)/(1 + εn)}

.

By Lemma D.2, we have

sup

f ∈ Fn : ‖X̃β −
∑p

j=1 f0j(Xj)‖2 ≥ c̃0σ0

√
nεn,

or |σ2 − σ2
0| ≥ 4σ2

0εn

Ef (1− φn)

≤ sup
f∈Fn:(β,σ2)∈C

Ef (1− φn). (D.67)

Similar to Song and Liang (2017), we consider C ⊂ Ĉ ∪ C̃, where

Ĉ = {σ2/σ2
0 > (1 + εn)/(1− εn) or σ2/σ2

0 < (1− εn)/(1 + εn)},

C̃ = {‖X̃β −
p∑
j=1

f0j(Xj)‖2 ≥ c̃0σ0εn and σ2 = σ2
0},

and so an upper bound for (D.67) is

sup
f∈Fn:(β,σ2)∈C

Ef (1− φn) = sup
f∈Fn:(β,σ2)∈C

Ef min{1− φ′n, 1− φ̃n}
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≤ max

{
sup

f∈Fn:(β,σ2)∈Ĉ
Ef (1− φ′n), sup

f∈Fn:(β,σ2)∈C̃
Ef (1− φ̃n)

}
. (D.68)

Using very similar arguments as those used to prove (D.43) in Theorem 2 and using As-

sumptions (B1) and (B6), so that the bias ‖δ‖2
2 . ns0d

−2κ . nε2n, we can show that (D.68)

can be further bounded from above as

sup

f ∈ Fn : ‖X̃β −
∑p

j=1 f0j(Xj)‖2 ≥ c̃0σ0

√
nεn,

or |σ2 − σ2
0| ≥ 4σ2

0εn

Ef (1− φn)

≤ exp
(
−min{ĉ4, c̃4}nε2n

)
, (D.69)

where ĉ4 > 0 and c̃4 > 0 are the constants from (D.65) and (D.66).

Choose C4 = min{č4, ĉ4, c̃4}, and we have from (D.66) and (D.69) that (D.55) and

(D.56) both hold.

Since we have verified (D.53) and (D.54)-(D.56) for our choice of ε2n = s0 log p/n +

s0n
−2κ/(2κ+1), it follows that

Π

(
β :

∣∣∣∣∣∣∣∣X̃β − p∑
j=1

f0j(Xj)

∣∣∣∣∣∣∣∣
2

≥ c̃0σ0

√
nεn|Y

)
→ 0 a.s. P̃0 as n, p→∞,

and

Π
(
σ2 : |σ2 − σ2

0| ≥ 4σ2
0εn|Y

)
→ 0 as n→∞, a.s. P̃0 as n, p→∞,

i.e. we have proven (D.52), or equivalently, (6.11) and (6.12).

Proof of Theorem 5. The proof is very similar to the proof of Theorem 3 and is thus omit-

ted.
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Moran, G. E., V. Ročková, and E. I. George (2019). Variance prior forms for high-

dimensional Bayesian variable selection. Bayesian Analysis 14 (4), 1091–1119.

Ning, B., S. Jeong, and S. Ghosal (2019). Bayesian linear regression for multivariate

responses under group sparsity. Bernoulli (to appear).

43



Ročková, V. and E. I. George (2018). The spike-and-slab lasso. Journal of the American

Statistical Association 113 (521), 431–444.

Song, Q. and F. Liang (2017). Nearly optimal Bayesian shrinkage for high dimensional

regression. arXiv pre-print arXiv: 1712.08964 .

Storlie, C. B., H. D. Bondell, B. J. Reich, and H. H. Zhang (2011). Surface estimation,

variable selection, and the nonparametric oracle property. Statistica Sinica 21 (2), 679.

Tibshirani, R. (1996). Regression shrinkage and selection via the lasso. Journal of the

Royal Statistical Society: Series B (Statistical Methodology) 58, 267–288.

van de Geer, S., P. Bühlmann, Y. Ritov, and R. Dezeure (2014). On asymptotically optimal

confidence regions and tests for high-dimensional models. The Annals of Statistics 42 (3),

1166–1202.

Wei, R., B. J. Reich, J. A. Hoppin, and S. Ghosal (2020). Sparse Bayesian additive non-

parametric regression with application to health effects of pesticides mixtures. Statistica

Sinica 30, 55–79.

Zhang, C.-H. and T. Zhang (2012). A general theory of concave regularization for high-

dimensional sparse estimation problems. Statistical Science 27 (4), 576–593.

44


