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1. Proofs for Section 3.3

1.1. Proof of Theorem 1

The proof of Theorem 1 is based on a lemma. This lemma is similar to
Lemma 1.1 in Goh et al. [3], with suitable modifications so that we utilize
Conditions (A1)-(A3) explicitly. Furthermore, Goh et al. [3] gave a sufficient
condition for posterior consistency in the Frobenius norm when pn = o(n) in
Theorem 1 of their paper. However, we are not clear about a particular step in
their proof. They assert that{

(A,B) : n−1
(
||Yn −XC)Σ−1/2||2F − ||(Yn −XC∗)Σ−1/2||2F

)
< 2ν,

C = AB>
}

⊇
{

(A,B) : n−1

∣∣∣∣||Yn −XC||2F − ||(Yn −XC∗)||2F
∣∣∣∣ < 2τminν,C = AB>

}
,

where τmin is the minimum eigenvalue for Σ. This does not seem to be true in
general, unless the matrix (Yn−XC)(Yn−XC)>−(Yn−XC∗)(Yn−XC∗)> is
positive definite, which cannot be assumed. Our proof for Theorem 1 thus gives
a different sufficient condition for posterior consistency in this low-dimensional
setting. Moreover, the proof of Theorem 2 in the ultrahigh-dimensional case
requires a suitable modification of Theorem 1. Thus, we deem it beneficial to
write out all the details for Lemma 1 and Theorem 1.

Lemma 1. Define Bε = {Bn : ||Bn −B0||F > ε}, where ε > 0. To test H0 :
Bn = B0 vs. H1 : Bn ∈ Bε, define a test function Φn = 1(Yn ∈ Cn), where the

critical region is Cn :=
{

Yn : ||B̂n −B0||F > ε/2
}

and B̂n = (X>nXn)−1X>nYn.

Then, under model (10) and assumptions (A1)-(A3), we have that as n→∞,
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1. EB0(Φn) ≤ exp(−ε2nc1/16d2),

2. sup
Bn∈Bε

EBn(1− Φn) ≤ exp(−ε2nc1/16d2).

Proof of Lemma 1. Since B̂n ∼MN pn×q(B0, (X
>
nXn)−1,Σ) w.r.t. P0-measure,

Zn = (X>nXn)1/2(B̂n −B0)Σ−1/2 ∼MN pn×q(O, Ipn , Iq). (1.1)

Using the fact that for square conformal positive definite matrices A,B, λmin(A)tr(B) ≤
tr(AB) ≤ λmax(A)tr(B), we have

EB0(Φn) = PB0(Yn : ||B̂n −B0||F > ε/2)

= PB0
(||(X>nXn)−1/2ZnΣ1/2||2F > ε2/4) (by (4))

= PB0(tr(Σ1/2Zn(X>nXn)−1ZnΣ1/2) > ε2/4)

≤ PB0
(n−1c−1

1 tr(Σ1/2Z>nZnΣ1/2) > ε2/4)

≤ PB0
(n−1c−1

1 d2tr(Z>nZn) > ε2/4)

= PB0

(
||Zn||2F >

ε2c1n

4d2

)
= Pr

(
χ2
pnq >

ε2c1n

4d2

)
(by (1.1)), (1.2)

where the two inequalities follow from Assumptions (A2) and (A3) respectively.
By Armagan et al. [1], for all m > 0, Pr(χ2

m ≥ x) ≤ exp(−x/4) whenever
x ≥ 8m. Using Assumption (A1) and noting that q is fixed, we have by (1.1)
that as n→∞,

EB0
(Φn) ≤ Pr

(
χ2
pnq >

ε2c1n

4d2

)
≤ exp

(
−ε

2c1n

16d2

)
,

thus establishing the first part of the lemma.
We next show the second part of the lemma. We have

sup
Bn∈Bε

EBn(1− Φn) = sup
Bn∈Bε

PBn(Yn : ||B̂n −B0||F ≤ ε/2)

≤ sup
Bn∈Bε

PBn

(
Yn :

∣∣∣∣||B̂n −Bn||F − ||Bn −B0||F
∣∣∣∣ ≤ ε/2)

≤ sup
Bn∈Bε

PBn

(
Yn : −ε/2 + ||Bn −B0||F ≤ ||B̂n −Bn||F

)
= PBn(Yn : ||B̂n −Bn||F > ε/2)

≤ exp

(
−ε

2c1n

16d2

)
,

The last inequality follows from the fact that B̂n ∼MN pn×q(Bn, (X
>
nXn)−1,Σ).

Thus, we may use the same steps that were used to prove the first part of the
lemma. Therefore, we have also established the second part of the lemma.
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Proof of Theorem 1. We utilize the proof technique of Theorem 1 in Armagan
et al. [1] and modify it suitably for the multivariate case subject to conditions
(A1)-(A3). The posterior probability of Bn is given by

Πn(Bn|Yn) =

∫
Bn

f(Yn|Bn)

f(Yn|B0)
Πn(dBn)∫

f(Yn|Bn)

f(Yn|B0)
Πn(dBn)

≤ Φn +
(1− Φn)JBε

Jn

= I1 +
I2
Jn
, (1.3)

where JBε =

∫
Bε

{
f(Yn|Bn)

f(Yn|B0)

}
Πn(dBn) and Jn =

∫ {
f(Yn|Bn)

f(Yn|B0)

}
Πn(dBn).

Let b = ε2c1
16d2

. For sufficiently large n, using Markov’s Inequality and the first
part of Lemma 1, we have

PB0

(
I1 ≥ exp

(
−bn

2

))
≤ exp

(
bn

2

)
EB0

(I1) ≤ exp

(
−bn

2

)
.

This implies that
∑∞
n=1 PB0

(I1 ≥ exp(−bn/2)) <∞. Thus, by the Borel-Cantelli
Lemma, I1 → 0 a.s. P0 as n→∞.

We next look at the behavior of I2. We have

EB0
I2 = EB0

{(1− Φn)JBε} = EB0

{
(1− Φn)

∫
Bε

f(Yn|Bn)

f(Yn|B0)
Πn(dBn)

}
=

∫
Bε

∫
(1− Φn)f(Yn|Bn) dYn Πn(dBn)

≤ Πn(Bε) sup
Bn∈Bε

EBn(1− Φn)

≤ sup
Bn∈Bε

EBn(1− Φn)

≤ exp(−bn),

where the last inequality follows from the second part of Lemma 1.
Thus, for sufficiently large n, PB0

(I2 ≥ exp(−bn/2)) ≤ exp(−bn/2), which
implies that

∑∞
n=1 PB0

(I2 ≥ exp(−bn/2)) < ∞. Thus, by the Borel-Cantelli
Lemma, I2 → 0 a.s. P0 as n→∞.

We have now shown that both I1 and I2 in (1.3) tend towards zero expo-
nentially fast. We now analyze the behavior of Jn. To complete the proof, we
need to show that

exp(bn/2)Jn →∞ P0 a.s. as n→∞. (1.4)
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Note that

exp(bn/2)Jn = exp(bn/2)

∫
exp

{
−n 1

n
ln
f(Yn|B0)

f(Yn|Bn)

}
Πn(dBn)

≥ exp {(b/2− ν)n}Πn(Dn,ν), (1.5)

where Dn,ν =
{

Bn : n−1 ln
(
f(Yn|B0)
f(Yn|Bn)

)
< ν

}
for 0 < ν < b/2. Therefore, we

have

Dn,ν =

{
Bn : n−1

(
1

2
tr
[
[(Yn −XnBn)>(Yn −XnBn)]Σ−1

]
− 1

2
tr [[(Yn−

XnB0)>(Yn −XnB0)]Σ−1
])
< 2ν

}
≡
{

Bn : n−1
(

tr
[
Σ−1/2(Yn −XnBn)>(Yn −XnBn)Σ−1/2

]
− tr

[
Σ−1/2

(Yn −XnB0)>(Yn −XnB0)Σ−1/2
])

< 2ν
}

≡
{

Bn : n−1
(
||(Yn −XnBn)Σ−1/2||2F − ||(Yn −XnB0)Σ−1/2||2F

)
< 2ν

}
.

Noting that

||(Yn −XnBn)Σ−1/2||2F ≤ ||(Yn −XnB0)Σ−1/2||2F + ||Xn(Bn −B0)Σ−1/2||2F
+ 2||(Yn −XnB0)Σ−1/2||F ||Xn(Bn −B0)Σ−1/2||F ,

we have

Πn(Dn,ν) ≥ Π
{

Bn : n−1
(

2||Yn −XnB0)Σ−1/2||F ||Xn(Bn −B0)Σ−1/2||F

+||Xn(Bn −B0)Σ−1/2||2F
)
< 2ν

}
≥ Π

{
Bn : n−1||Xn(Bn −B0)Σ−1/2||F <

2ν

3κn
,

||(Yn −XnB0)Σ−1/2||F < κn

}
, (1.6)

for some positive increasing sequence κn such that κn →∞ as n→∞.
Set κn = n(1+ρ)/2 for ρ > 0. Since En = Yn − XnB0, we have Zn =

(Yn −XnB0)Σ−1/2 ∼MNn×q(O, In, Iq). Therefore, as n→∞,

PB0
(||(Yn −XnB0)Σ−1/2||F > κn) = PB0

(||Zn||2F > κ2
n)

= Pr
(
χ2
nq > n1+ρ

)
≤ exp

(
−n

1+ρ

4

)
,

where the last inequality follows from the fact that for all m > 0, Pr(χ2
m ≥ x) ≤

exp(−x/4) when x ≥ 8m and the assumptions that q is fixed and ρ > 0. Since
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∑∞
n=1 PB0

(||(Yn −XnB0)Σ−1/2||F > κn) ≤
∑∞
n=1 exp

(
−n

1+ρ

4

)
<∞, we have

by the Borel-Cantelli Lemma that

PB0 {||Yn −XnB0||F > κn infinity often } = 0.

For sufficiently large n, we have from (1.6) that

Πn(Dn,ν) ≥ Πn

{
Bn : n−1||Xn(Bn −B0)Σ−1/2||F <

2ν

3κn

}
≥ Πn

{
n−1n1/2c

1/2
2 d

−1/2
1 ||Bn −B0||F <

2ν

3κn

}
= Πn

{
Bn : ||Bn −B0||F <

(
2d

1/2
1 ν

3c
1/2
2

)
n−(1+ρ)/2n1/2

}

= Πn

{
Bn : ||Bn −B0||F <

∆

nρ/2

}
, (1.7)

where ∆ =
2d

1/2
1 ν

3c
1/2
2

. The second inequality in (1.7) follows from Assumptions

(A2) and (A3) and the fact that

||Xn(Bn −B0)Σ−1/2||F =
√

tr[Σ−1/2(Bn −B0)>XT
nXn(Bn −B0)Σ−1/2]

≤
√
λmax(X>nXn)λmax(Σ−1)||Bn −B0)||2F

< n1/2c
1/2
2 d

−1/2
1 ||Bn −B0||F .

Therefore, from (1.7), if Πn

{
Bn : ||Bn −B0||F < ∆

nρ/2

}
> exp(−kn) for all

0 < k < b/2− ν, then (1.5) will hold.

Substitute b = ε2c1
16d2

,∆ =
2d

1/2
1 ν

3c
1/2
2

⇒ ν =
3∆c

1/2
2

2d
1/2
1

to obtain that 0 < k <

ε2c1
32d2
− 3∆c

1/2
2

2d
1/2
1

. To ensure that k > 0, we must have 0 < ∆ <
ε2c1d

1/2
1

48c
1/2
2 d2

.

Therefore, if the conditions on ∆ and k in Theorem 1 are satisfied, then
(1.4) holds. This ensures that the expected value of (1.3) w.r.t. P0 measure
approaches 0 as n→∞, which ultimately establishes that posterior consistency
holds if (11) is satisfied.

1.2. Proof of Theorem 2

Proof of Theorem 2 also requires the creation of an appropriate test function.
In this case, the test must be very carefully constructed since Xn is no longer
nonsingular. We first define some constants and prove a lemma.

For arbitrary ε > 0 and c̃1 and d2 specified in (B3) and (B5), let

c̃3 =
ε2c̃1
16d2

, (1.8)

and

mn =

⌊
nc̃3

6 ln pn

⌋
. (1.9)
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Lemma 2. Define the set Bε = {Bn : ||Bn −B0||F > ε}. Suppose that Con-
ditions (B1)-(B6) hold under model (10). In order to test H0 : Bn = B0 vs.

H1 : Bn ∈ Bε, there exists a test function Φ̃n such that as n→∞,

1. EB0(Φ̃n) ≤ exp(−nc̃3/2),

2. sup
Bn∈Bε

EBn(1− Φ̃n) ≤ exp(−nc̃3/4),

where c̃3 is defined in (1.8).

Proof of Lemma 2. By Condition (B1), we must have that n
ln pn

→ ∞. More-

over, by (1.9), mn = o(n), since ln pn → ∞ as n → ∞. Combining this with
assumption (B6), we must have that for sufficiently large n, there exists a pos-
itive integer m̃n, determined by Equation (1.9), such that 0 < s∗ < m̃n < n.

Fix ε > 0. For sufficiently large n so that s∗ < m̃n < n, define the setM as
the set of models S which properly contain the true model S∗ ⊂ {1, . . . , pn} so
that

M =

{
S : S ⊃ S∗, S 6= S∗, |S| ≤ m̃n, ||BSc

n ||F ≤
ε

4(1 + c̃−1
1 c̃2)

}
, (1.10)

where Sc denotes {1, . . . , pn} \S and c̃1 and c̃2 are from Assumptions (B3) and
(B4).

Let XS denote the submatrix of X with columns indexed by model S, and
let BS

0 denote the submatrix of B0 that contains rows of B0 indexed by S.
Define the following set Cn:

Cn =
∨
S∈M

{
||(X>SXS)−1X>SYn −BS

0 ||F > ε/2
}
, (1.11)

where
∨

indicates the union of all models S contained inM. Essentially, the set
Cn contains the union of all models S that contain the true model S∗, S 6= S∗,
such that the submatrix XS has at least s∗ columns and at most m̃n(< n)
columns, and ||(X>SXS)−1X>SYS − BS

0 ||F > ε/2, while ||BSc

n ||F ≤ ε
4(1+c̃−1

1 c̃2)
.

Given our choice of m̃n, XT
SXS is nonsingular for all models S contained in our

sets.
We are now ready to define our test function Φ̃n. To test H0 : Bn = B0 vs.

H1 : Bn ∈ Bε, define Φ̃n = 1(Yn ∈ Cn), where the critical region is defined as

in (1.11). We now show that Lemma 2 holds with this choice of Φ̃.
Let s be the size of an arbitrary model S. Noting also that there are

(
pn
s

)
ways to select a model of size s, we therefore have for sufficiently large n,

EB0
(Φ̃n) ≤

∑
S∈M

PB0

(
Yn : ||(X>SXS)−1X>SYn −BS

0 ||F > ε/2
)

≤
m̃n∑

s=s∗+1

(
pn
s

)
PB0

(
Yn : ||(X>SXS)−1X>SYn −BS

0 ||F > ε/2
)
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≤
m̃n∑

s=s∗+1

(
pn
s

)
P
(
χ2
sq >

ε2c̃1n

4d2

)

≤
m̃n∑

s=s∗+1

(
pn
s

)
exp(−nc̃3)

≤ (m̃n − s∗)
(
pn
m̃n

)
exp(−nc̃3)

≤ (m̃n − s∗)
(
epn
m̃n

)m̃n
exp(−nc̃3), (1.12)

where we use Part 1 of Lemma 1 for the second inequality, the fact that P(χ2
m >

x) ≤ exp(−x/4) when x > 8m and m̃n = o(n) for the third inequality, and the
fact that

∑m
i=k

(
n
i

)
≤ (m− k + 1)

(
n
m

)
for the fourth inequality in (1.12).

Since lnn = o(n), we must have for sufficiently large n that lnn < c̃3n
6 . Then

from the definition of m̃n, we have

ln(m̃n − s∗) + m̃n

(
1 + ln

(
pn
m̃n

))
≤ ln(m̃n) + m̃n (1 + ln(pn))

≤ ln(n) +
c̃3n

6 ln pn
+

(
c̃3n

6 ln pn

)
ln(pn)

≤ c̃3n

6
+
c̃3n

6
+
c̃3n

6
=
c̃3n

2
. (1.13)

Therefore, from (1.12) and (1.13), we must have that EB0
(Φ̃n) ≤ exp(−nc̃3/2)

as n→∞. This proves the first part of the lemma.
Let S̃ be an arbitrary set inM, as defined in (1.10) and S̃c := {1, . . . , pn}\ S̃

be its complement. We observe that as n→∞,

sup
Bn∈Bε

EBn(1− Φ̃n) = sup
Bn∈Bε

PBn(Yn /∈ Cn)

= sup
Bn∈Bε

PBn

( ⋂
S∈M

{
Yn : ||(X>SXS)−1X>SYn −BS

0 ||F ≤ ε/2
})

≤ sup
Bn∈Bε

PBn

(
Yn : ||(X>

S̃
XS̃)−1X>

S̃
Yn −BS̃

0 ||F ≤ ε/2
)

≤ sup
Bn∈Bε

PBn

(
Yn : ||(X>

S̃
XS̃)−1X>

S̃
Yn −BS̃

0 ||F ≤ ε/2
)

= sup
Bn∈Bε

PBn

(
Yn : ||(X>

S̃
XS̃)−1X>

S̃
En + BS̃

n + (X>
S̃

XS̃)−1X>
S̃

XS̃cB
S̃c

n −BS̃
0 ||F ≤ ε/2

)
≤ sup

Bn∈Bε
PBn

(
Yn : ||(X>

S̃
XS̃)−1X>

S̃
En||F ≥ ||BS̃

n −BS̃
0 ||F − ||(X>S̃XS̃)−1X>

S̃
XS̃cB

S̃c

n ||F − ε/2
)
.

(1.14)

We have ||BS̃
n−BS̃

0 ||F = ||Bn−B0||F −||BS̃c

n ||F . Additionally, by Assumptions

(B3) and (B4), ||(X>
S̃

XS̃)−1X>
S̃

XS̃cB
S̃c

n ||F ≤ c−1
1 c2||BS̃c

n ||F . Combining these
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with (1.14), we have that for Bε = {||Bn −B0||F > ε},

sup
Bn∈Bε

EBn(1− Φ̃n) ≤ PBn

(
Yn : ||(X>

S̃
XS̃)−1X>

S̃
En||F ≥ ε/2− (1 + c−1

1 c2)||BS̃c

n ||F
)

≤ PBn

(
Yn : ||(X>

S̃
XS̃)−1X>

S̃
En||F ≥ ε/4

)
= PBn

(
Yn : ||(X>

S̃
XS̃)−1X>

S̃
(Yn −XS̃BS̃

0 )||F ≥ ε/4
)

= PBn

(
Yn : ||(X>

S̃
XS̃)−1X>

S̃
Yn −BS̃

0 ||F ≥ ε/4
)

≤ P
(
χ2
|S̃|q >

ε2c̃1n

16d2

)
≤ exp(−nc̃3/4),

where c̃3 is from (1.8). Note that since S̃ ∈ M, |S̃| ≤ m̃n = o(n), and thus, we
may invoke the fact that P(χ2

m > x) ≤ exp(−x/4) when x > 8m in the final
inequality.

Proof of Theorem 2. In light of Lemma 2, we suitably modify Theorem 1 for
the ultrahigh-dimensional case. Let Φ̃n be the test function defined in Lemma
2 for sufficiently large n. The posterior probability of Bn is given by

Πn(Bn|Yn) =

∫
Bn

f(Yn|Bn)

f(Yn|B0)
Π(dBn)∫

f(Yn|Bn)

f(Yn|B0)
Π(dBn)

≤ Φ̃n +
(1− Φ̃n)J̃Bε

J̃n

= Ĩ1 +
Ĩ2

J̃n
, (1.15)

where J̃Bε =

∫
Bε

{
f(Yn|Bn)

f(Yn|B0)

}
Π(dBn) and J̃n =

∫ {
f(Yn|Bn)

f(Yn|B0)

}
Π(dBn).

For sufficiently large n, using Markov’s Inequality and the first part of
Lemma 2, and taking c̃3 as defined in (1.8), we have

PB0

(
Ĩ1 ≥ exp

(
−nc̃3

4

))
≤ exp

(
nc̃3
4

)
EB0(Ĩ1) ≤ exp

(
−nc̃3

4

)
.

This implies that
∑∞
n=1 PB0

(
Ĩ1 ≥ exp(−nc̃3/4)

)
< ∞. Thus, by the Borel-

Cantelli Lemma, we have PB0
(Ĩ1 ≥ exp(−nc̃3/4) infinitely often) = 0, i.e. Ĩ1 →

0 a.s. P0 as n→∞.
We next look at the behavior of Ĩ2. We have
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EB0
Ĩ2 = EB0

{
(1− Φ̃n)J̃Bε

}
= EB0

{
(1− Φ̃n)

∫
Bε

f(Yn|Bn)

f(Yn|B0)
Πn(dBn)

}
=

∫
Bε

∫
(1− Φ̃n)f(Yn|Bn) dYn Πn(dBn)

≤ πn(Bε) sup
Bn∈Bε

EBn(1− Φ̃n)

≤ sup
Bn∈Bε

EBn(1− Φ̃n)

≤ exp(−nc̃3/4),

where the last inequality follows from the second part of Lemma 2, and c̃3 is
again from (1.8).

Thus, for sufficiently large n, PB0
(Ĩ2 ≥ exp(−nc̃3/8)) ≤ exp(−nc̃3/8), which

implies that
∑∞
n=1 PB0

(
Ĩ2 ≥ exp(−nc̃3/8)

)
< ∞. Thus, by the Borel-Cantelli

Lemma, Ĩ2 → 0 a.s. P0 as n→∞.
We have now shown that both Ĩ1 and Ĩ2 in (1.15) tend towards zero expo-

nentially fast. We now analyze the behavior of J̃n. To complete the proof, we
need to show that

exp(nc̃3/8)Jn →∞ P0 a.s. as n→∞. (1.16)

Note that

exp(nc̃3/8)J̃n = exp(nc̃3/8)

∫
exp

{
−n 1

n
ln
f(Yn|B0)

f(Yn|Bn)

}
Πn(dBn)

≥ exp {(c̃3/8− ν)n}Πn(D̃n,ν), (1.17)

where D̃n,ν =
{

Bn : n−1 ln
(
f(Yn|B0)
f(Yn|Bn)

)
< ν

}
for 0 < ν < c̃3/8.

Because of Assumption (B4) which bounds the maximum singular value of
Xn from above by nc̃2, the rest of the proof is essentially identical to the re-
mainder of the proof from Theorem 1, with suitable modifications (i.e. replacing
c1 with c̃1 and c2 with c̃2 and substituting in the expression in (1.8) for c̃3).

Therefore, if the conditions on ∆̃ and k in Theorem 2 are satisfied, then
(1.17) is satisfied, i.e. exp(nc̃3/8)Jn → ∞ as n → ∞. This ensures that the
expected value of (1.16) w.r.t. P0 measure approaches 0 as n → ∞, which
ultimately establishes that posterior consistency holds if (12) is satisfied.

2. Proofs for Section 3.4

2.1. Preliminary Lemmas

Before proving Theorems 3 and 4, we first prove two lemmas which charac-
terize the marginal prior density for the rows of B. Throughout this section, we
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denote bi, 1 ≤ i ≤ p as the ith row of B under (5), with polynomial-tailed hy-
perpriors of the form (3). Lemma 4 in particular plays a central role in proving
our theoretical results in Section 3 of the main article.

Lemma 3. Under model (5) with polynomial-tailed hyperpriors (3), the marginal
density π(bi|Σ) is equal to

π(bi|Σ) = D

∫ ∞
0

ξ
−q/2−a−1
i exp

{
− 1

2ξiτ
||biΣ−1/2||22

}
L(ξi)dξi,

where D > 0 is an appropriate constant.

Proof of Lemma 3. Let D = diag(ξ1, ..., ξp). Using Definition 2, the joint prior
for (5) with polynomial-tailed priors is

π(B, ξ1, ..., ξp|Σ) ∝ |D|−q/2|Σ|−p/2 exp

{
−1

2
tr[Σ−1BT τ−1D−1B]

}
×

p∏
i=1

π(ξi)

∝

[
p∏
i=1

(ξi)
−q/2

]
exp

{
− 1

2τ

p∑
i=1

||ξ−1/2
i biΣ

−1/2||22

}
×

p∏
i=1

π(ξi)

∝
p∏
i=1

[
ξ
−q/2
i exp

{
− 1

2ξiτ
||biΣ−1/2||22

}
π(ξi)

]

∝
p∏
i=1

[
ξ
−q/2−a−1
i exp

{
− 1

2ξiτ
||biΣ−1/2||22

}
Lξi)

]
. (2.1)

Since the rows, bi and the ξi’s, 1 ≤ i ≤ p are independent, we have from (2.1)
that

π(bi, ξi|Σ) ∝ ξ−q/2−a−1
i exp

{
− 1

2ξiτ
||biΣ−1/2||22

}
.

Integrating out ξi gives the desired marginal prior for π(bi|Σ).

Though we are not able to obtain a closed form solution for π(bi|Σ), we are
able to obtain a lower bound on it that can be written in closed form, as we
illustrate in the next lemma.

Lemma 4. Suppose Condition (A3) on the eigenvalues of Σ and Condition
(C1) on the slowly varying function L·) in (3) hold . Under model (5) with
polynomial-tailed hyperpriors (3) and known Σ, the marginal density for bi, the
ith row of B, can be bounded below by

C̃ exp

(
− ||bi||

2
2

2τd1t0

)
, (2.2)

where C̃ = Dc0t
−q/2−a
0

(
q
2 + a

)−1
.
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Proof of Lemma 4. Following from Lemma 3, we have

π(bi) = D

∫ ∞
0

ξ
−q/2−a−1
i exp

{
− 1

2ξiτ
||biΣ−1/2||22

}
L(ξi)dξi

≥ D
∫ ∞

0

ξ
−q/2−a−1
i exp

{
− ||bi||

2
2

2ξiτd1

}
L(ξi)dξi (2.3)

≥ D
∫ ∞
t0

ξ
−q/2−a−1
i exp

{
− ||bi||

2
2

2ξiτd1

}
L(ξi)dξi

≥ Dc0
∫ ∞
t0

ξ
−q/2−a−1
i exp

{
− ||bi||

2
2

2ξiτd1

}
dξi (2.4)

= Dc0

(
2τd1

||bi||22

)q/2+a ∫ ||bi||22/2τd1t0

0

uq/2+a−1e−udu (2.5)

≥ Dc0
(

2τd1

||bi||22

)q/2+a

exp

(
− ||bi||

2
2

2τd1t0

)∫ ||bi||22/2τd1t0

0

uq/2+a−1du

= Dc0t
−q/2−a
0

(q
2

+ a
)−1

exp

(
− ||bi||

2
2

2τd1t0

)
= C̃ exp

(
− ||bi||

2
2

2τd1t0

)
.

where (2.3) follows from Condition (A3), while (2.4) follows from Condition

(C1). (2.5) follows from a change of variables u =
||bi||22
2ξiτd1

. We have thus estab-

lished the lower bound (2.2) for the marginal density of bi.

2.2. Proofs for Theorem 3 and Theorem 4

Before we prove Theorems 3 and 4 for the MBSP model (5) with hyperpriors
(3), we first introduce some notation. Because we are operating under the
assumption of sparsity, most of the rows of B0 should contain only entries of
zero.

Our proofs depend on partitioning B0 into sets of active and inactive pre-
dictors. To this end, let b0

j denote the jth row for the true coefficient matrix B0

and bnj denote the jth row of Bn, where both B0 and Bn depend on n. We also

let An :=
{
j : bnj 6= 0, 1 ≤ j ≤ pn

}
denote the set of indices of the nonzero rows

of B0. This indicates active predictors. Equivalently, Acn is the set of indices of
the zero rows (or the inactive predictors).

Proof of Theorem 3. For the low-dimensional setting, let s = |S| denote the size
of the true model. Since (A1)-(A3) hold, it is enough to show (by Theorem 1)
that, for sufficiently large n and any k > 0,

Πn

(
Bn : ||Bn −B0||F <

∆

nρ/2

)
> exp(−kn),
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where 0 < ∆ <
ε2c1d

1/2
1

48c
1/2
2 d2

. We have

Πn

(
Bn : ||Bn −B0||F <

∆

nρ/2

)
= Πn

(
Bn : ||Bn −B0||2F <

∆2

nρ

)

= Πn

Bn :
∑
j∈An

||bnj − b0
j ||22 +

∑
j∈Acn

||bnj ||22 <
∆2

nρ


≥ Πn

Bn :
∑
j∈An

||bnj − b0
j ||22 <

s∆2

pnnρ
,
∑
j∈Acn

||bj ||22 <
(pn − s)∆2

pnnρ


≥

 ∏
j∈An

Πn

(
bnj : ||bnj − b0

j ||22 <
∆2

pnnρ

)
×

Πn

∑
j∈Acn

||bj ||22 <
(pn − s)∆2

pnnρ

 . (2.6)

Define the density

π̃(bj) ∝ exp

(
− ||bj ||

2
2

2τnd1t0

)
, (2.7)

Since (C1) holds for the slowly varying component of (3), we have by the lower
bound in Lemma 4, (2.6), and (2.7) that it is sufficient to show that{

Π̃n

(
bnj : ||bnj − b0

j ||22 <
∆2

pnnρ

)}s
×

Π̃n

∑
j∈Acn

||bj ||22 <
(pn − s)∆2

pnnρ

 > exp(−kn) (2.8)

for sufficiently large n and any k > 0 in order to obtain posterior consistency
(again by Theorem 1). We consider the last two terms in the product on the
left-hand side of (2.8) separately. Note that

Π̃n

(
bnjk :

q∑
k=1

(bnjk − b0jk)2 <
∆2

pnnρ

)
≥ Π̃n

(
bnjk :

q∑
k=1

|bnjk − b0jk| <
∆√
pnnρ

)

≥
q∏

k=1

{
Π̃n

(
bnjk : |bnjk − b0jk| <

∆

q
√
pnnρ

)}
(2.9)

By (2.7), π̃(bnjk) = 1√
2πd1t0

exp

(
− (bnjk)

2

2d1t0

)
, i.e. bnjk ∼ N(0, τnd1t0). Therefore,
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we have

Π̃n

(
bnjk : |bnjk − b0jk| <

∆

q
√
pnnρ

)

=
1√

2πτnd1t0

∫ b0jk+ ∆

q
√
pnn

ρ

b0jk−
∆

q
√
pnn

ρ

exp

−
(
bnjk

)2

2τnd1t0

 dbjk

= Pr

(
− ∆

q
√
pnnρ

≤ X − b0jk ≤
∆

q
√
pnnρ

)
= Pr

(
|X − b0jk| ≤

∆

q
√
pnnρ

)
, (2.10)

where X ∼ N(b0jk, τnd1t0). By Assumption (C2), b0jk is finite for every n.

Furthermore, for any random variable X ∼ N(µ, σ2), we have the concentration

inequality Pr |X − µ| > t) ≤ 2e−
t2

2σ2 for any t ∈ R. Setting X ∼ N(b0jk, τnd1t0)

and t = ∆
q
√
pnnρ

, we have

Pr

(
|X − b0jk| ≤

∆

q
√
pnnρ

)
= 1− Pr

(
|X − b0jk| ≥

∆

q
√
pnnρ

)
≥ 1− 2 exp

(
− ∆2

2q2pnnρτnd1t0

)
. (2.11)

We now consider the second term on the left in (2.8). Since E(b2jk) = τnd1t0,
an application of the Markov inequality gives

Π̃n

bnjk :
∑
j∈Acn

q∑
k=1

(bnjk)2 <
(pn − s)∆2

pnnρ

 ≥ 1−

pnn
ρE

∑
j∈Acn

q∑
k=1

(
bnjk
)2

(pn − s)∆2

= 1− pnqn
ρτnd1t0
∆2

. (2.12)

Combining (2.8)-(2.12), we obtain as a lower bound for the left-hand side of
(2.8), {

1− 2 exp

(
− ∆2

2q2pnnρτnd1t0

)}qs(
1− pnqn

ρτnd1t0
∆2

)
. (2.13)

By Assumption (C3), it is clear that (2.13) tends to 1 as n → ∞, so obviously
this quantity is greater than e−kn for any k > 0 for sufficiently large n. Since
the lower bound in (2.8) holds for all sufficiently large n, we have under the
given conditions that the MBSP model (5) achieves posterior consistency in the
Frobenius norm.
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Proof of Theorem 4. For the ultra high-dimensional setting, we first let S∗ ⊂
{1, 2, ..., pn} denote the indices of the nonzero rows, and denote the true size of
S∗ as s∗ = |S∗|. Since (B1)-(B6) hold, it is enough to show by Theorem 2 that,
for sufficiently large n and any k > 0,

Πn

(
Bn : ||Bn −B0||F <

∆̃

nρ/2

)
> exp(−kn),

where 0 < ∆̃ <
ε2c̃1d

1/2
1

48c̃
1/2
2 d2

and ρ > 0.

By Assumption (C1) for the slowly varying component in (3), Lemma 4, and
Theorem 2, it is thus sufficient to show that{

Π̃n

(
bnj : ||bnj − b0

j ||22 <
∆̃2

pnnρ

)}s∗

×

Π̃n

∑
j∈Acn

||bj ||22 <
(pn − s∗)∆̃2

pnnρ

 > exp(−kn) (2.14)

for sufficiently large n and any k > 0, where the density π̃n is defined in (2.7).
Mimicking the proof for Theorem 3 and given regularity conditions (C1) and
(C2), we obtain as a lower bound for the left-hand side of (2.14),{

1− 2 exp

(
− ∆̃2

2q2pnnρτnd1t0

)}qs∗ (
1− pnqn

ρτnd1t0

∆̃2

)
. (2.15)

Under Assumption (C3), (2.15) is clearly greater than e−kn for any k > 0 and
sufficiently large n, since (2.15) tends to 1 as n → ∞. We have thus proven
posterior consistency in the Frobenius norm for the ultra high-dimensional case
as well.

3. Gibbs Sampler for the MBSP-TPBN Model

Here, we provide the technical details of the Gibbs sampler for the MBSP-
TPBN model (16) and present an efficient method for sampling from the full
conditional of B. These algorithms are implemented in the R package MBSP.

3.1. Full Conditional Densities for the Gibbs Sampler

The full conditional densities are all available in closed form as follows. Let-
ting T = diag(ψ1, . . . , ψp), bi denote the ith row of B, and GIG(a, b, p) denote
a generalized inverse Gaussian density with f(x; a, b, p) ∝ x(p−1)e−(a/x+bx)/2,
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we have

B|rest ∼MN p×q

(
(X>X + T−1)−1X>Y,

(
X>X + T−1

)−1
,Σ
)
,

Σ|rest ∼ IW(n+ p+ d, (Y −XB)>(Y −XB) + B>T−1B + kIq),

ψi|rest
ind∼ GIG

(
||biΣ−1/2||22, 2ζi, u−

q

2

)
, i = 1, . . . , p, (3.1)

ζi|rest
ind∼ G (a, τ + ψi) , i = 1, . . . , p.

Because the full conditional densities are available in closed form, we can im-
plement the MBSP-TPBN model (16) straightforwardly using Gibbs sampling.

3.2. Fast Sampling of the Full Conditional Density for B

In (3.1), the most computationally intensive operation is sampling from the
density, π(B|rest). Much of the computational cost comes from computing
the inverse (X>X + T−1)−1, which requires O(p3) time complexity if we use
Cholesky factorization methods. In the case where p < n, this is not a problem.
However, when p� n, then this operation can be prohibitively costly.

In this section, we provide an alternative algorithm for sampling from the

densityMN p×q

(
(X>X + T−1)−1X>Y,

(
X>X + T−1

)−1
,Σ
)

in O(n2p) time.

Bhattacharya et al. [2] originally devised an algorithm to efficiently sample from
a class of structured multivariate Gaussian distributions. Our algorithm below
is a matrix-variate extension of the algorithm given by Bhattacharya et al. [2].

Algorithm 1

Step 1. Sample U ∼MN p×q(O,T,Σ) and M ∼MNn×q(O, In,Σ).

Step 2. Set V = XU + M.

Step 3. Solve for W in the below system of equations:

(XTX> + In)W = Y −V.

Step 4. Set Θ = U + TX>W.

With the above algorithm, we have the following proposition.

Proposition 1. Suppose Θ is obtained by following Algorithm 1. Then Θ ∼
MN p×q

(
(X>X + T−1)−1X>Y,

(
X>X + T−1

)−1
,Σ
)
.

Proof. This follows from a trivial modification of Proposition 1 in [2].

From Algorithm 1, it is clear that the most computationally intensive step is
solving the system of equations in Step 3. However, since T is a diagonal matrix,
it follows from the arguments in [2] that computing the inverse of (XTX>+In)
can be done in O(n2p) time. Once this inverse is obtained, solving the system
of equations can be done in O(n2q) time, and in general, q � p. It is thus clear
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that Algorithm 1 is O(n2p) when p > n. Since our algorithm scales linearly with
p, it provides a significant reduction in computing time from typical methods
based on Cholesky factorization when p� n.

On the other hand, if p < n, then Algorithm 1 provides no time saving,
so we simply utilize Cholesky factorization methods to sample from the full
conditional density, π(B|rest) in O(p3) time if p < n.

3.3. Convergence of the Gibbs Sampler

In order to ensure quick convergence, we need good initial guesses for B
and Σ, B(init) and Σ(init), respectively. We take as our initial guess for B,
B(init) = (X>X + λIp)

−1X>Y, where λ = δ + λmin+(X), λmin+(X) is the
smallest positive singular value of X, and δ = 0.01. This forces the term
X>X + λIp to be positive definite. For Σ, we take as our initial guess Σ(init) =
1
n

(
Y −XB(init)

)> (
Y −XB(init)

)
.

Figure 1 shows the historical plots of the first 10,000 draws from from the
Gibbs sampler for the MBSP-TPBN model described in Section 3.1 for four
randomly drawn coefficients bij in B from experiments 5 and 6 in Section 5.1.
The top two plots correspond to a true nonzero coefficient (b0ij = −3.8103) and a

true zero coefficient (b0ij = 0) from experiment 5 in 5.1 (n = 100, p = 500, q = 3).

The bottom two plots correspond to a true nonzero coefficient (b0ij = 3.1436) and

a true zero coefficient (b0ij = 0) from experiment 6 in (n = 150, p = 1000, q = 4).
We consider two different Markov chains with different starting values for

B(init): 1) the ridge estimator described above, and 2) the regularized MLASSO
estimator described in Section 5.1. We see from the plots that although both

chains start with different initial values of b
(init)
ij , they mix well and seem to

rapidly converge to a stationary distribution that captures the true coefficients
b0ij ’s with high probability.

References

[1] A. Armagan, D.B. Dunson, J. Lee, W.U. Bajwa, and N. Strawn. Posterior
consistency in linear models under shrinkage priors. Biometrika, 100(4):
1011–1018, 07 2013. URL https://doi.org/10.1093/biomet/ast028.

[2] Anirban Bhattacharya, Antik Chakraborty, and Bani K. Mallick. Fast
sampling with gaussian scale mixture priors in high-dimensional regres-
sion. Biometrika, 103(4):985–991, 2016. doi: 10.1093/biomet/asw042. URL
http://dx.doi.org/10.1093/biomet/asw042.

[3] Gyuhyeong Goh, Dipak K. Dey, and Kun Chen. Bayesian sparse reduced
rank multivariate regression. J. Multivar. Anal., 157:14 – 28, 2017. ISSN
0047-259X. doi: https://doi.org/10.1016/j.jmva.2017.02.007. URL http:

//www.sciencedirect.com/science/article/pii/S0047259X17301112.

16

https://doi.org/10.1093/biomet/ast028
http://dx.doi.org/10.1093/biomet/asw042
http://www.sciencedirect.com/science/article/pii/S0047259X17301112
http://www.sciencedirect.com/science/article/pii/S0047259X17301112


0 2000 4000 6000 8000 10000

−
10

−
5

0
5

10

Iteration

True Nonzero Coefficient

0 2000 4000 6000 8000 10000

−
10

−
5

0
5

10

Iteration

True Zero Coefficient

0 2000 4000 6000 8000 10000

−
10

−
5

0
5

10

Iteration

True Nonzero Coefficient

0 2000 4000 6000 8000 10000

−
10

−
5

0
5

10

Iteration

True Zero Coefficient

Figure 1: History plots of the first 10,000 draws from the Gibbs sampler for the MBSP-TPBN
model described in Section 3.1 for randomly drawn coefficients bij in B0 from experiments 5
and 6 in Section 5.1. The top two plots are taken from experiment 5 (n = 100, p = 500, q = 3),
and the bottom two plots are taken from Experiment 6 (n = 150, p = 1000, q = 4).
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