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ABSTRACT
In Section A, we provide all the proofs of the main results. In Section B, we provide
the technical details for implementing the empirical Bayes and fully Bayes variants
of the NBP model. In Section C, we compare the posterior shrinkage weights to the
theoretical posterior inclusion probabilities.

Appendix A. Proofs of Main Results

A.1. Proofs for Section 2.1

Proof of Proposition 2.1. As noted by Proposition 2.1 in [1], the beta prime den-
sity (7) can be rewritten as a product of independent gamma and inverse gamma
densities. We thus reparametrize model (6) for a single observation θ as follows:

θ|λiξ ∼ N (0, λξ),
λ ∼ G(a, 1),
ξ ∼ IG(b, 1).

(A1)

From (A1), we see that the joint distribution of the prior is proportional to

π(θ, λ, ξ) ∝ (λξ)−1/2 exp

(
− θ2

2λξ

)
λa−1 exp (−λ) exp

(
−1

ξ

)
ξ−b−1

= λa−3/2 exp(−λ)ξ−b−3/2 exp

(
−
(
θ2

2λ
+ 1

)
1

ξ

)
.
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Thus,

π(θ, λ) ∝ λa−3/2 exp(−λ)

∫ ∞
ξ=0

ξ−b−3/2 exp

(
−
(
θ2

2λ
+ 1

)
1

ξ

)
dξ

∝
(
θ2

2λ
+ 1

)−(b+1/2)

λa−3/2e−λ,

and thus, the marginal density of θ is proportional to

π(θ) ∝
∫ ∞
0

(
θ2

2λ
+ 1

)−(b+1/2)

λa−3/2e−λdλ. (A2)

As |θ| → 0, the expression in (A2) is bounded below by

C

∫ ∞
0

λa−3/2e−λdλ, (A3)

where C is a constant that depends on a and b. The integral expression in (A3) clearly
diverges to ∞ for any 0 < a ≤ 1/2. Therefore, (A2) diverges to infinity as |θ| → 0, by
the monotone convergence theorem.

Proof of Theorem 2.1. From (9), the posterior distribution of κi under NBPn is
proportional to

π(κi|Xi) ∝ exp

(
−κiX

2
i

2

)
κ
b−1/2
i (1− κi)an−1, κi ∈ (0, 1). (A4)

Hence,

E(1− κi|Xi) =

∫ 1

0
κ
b−1/2
i (1− κi)an exp

(
−κiX

2
i

2

)
dκi∫ 1

0
κ
b−1/2
i (1− κi)an−1 exp

(
−κiX

2
i

2

)
dκi

≤
eX

2
i /2

∫ 1

0
κ
b−1/2
i (1− κi)andκi∫ 1

0
κ
b−1/2
i (1− κi)an−1dκi

= eX
2
i /2

Γ(an + 1)Γ(b+ 1/2)

Γ(an + b+ 3/2)
× Γ(an + b+ 1/2)

Γ(an)Γ(b+ 1/2)

= eX
2
i /2

(
an

an + b+ 1/2

)
.

Proof of Theorem 2.2. Note that since b ∈ (12 ,∞), κ
b−1/2
i is increasing in κi on

(0, 1). Additionally, since an ∈ (0, 1), (1 − κi)an−1 is increasing in κi on (0, 1). Using
these facts, we have
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Pr(κi < ε|Xi) ≤

∫ ε

0
exp

(
−κiX

2
i

2

)
κ
b−1/2
i (1− κi)an−1dκi∫ 1

ε
exp

(
−κiX

2
i

2

)
κ
b−1/2
i (1− κi)an−1dκi

≤
eX

2
i /2

∫ ε

0
κ
b−1/2
i (1− κi)an−1dκi∫ 1

ε
κ
b−1/2
i (1− κi)an−1dκi

≤
eX

2
i /2(1− ε)an−1

∫ ε

0
κ
b−1/2
i dκi

εb−1/2
∫ 1

ε
(1− κi)an−1dκi

=
eX

2
i /2(1− ε)an−1

(
b+ 1

2

)−1
εb+1/2

a−1n εb−1/2(1− ε)a

= eX
2
i /2

anε

(b+ 1/2) (1− ε)
.

Proof of Theorem 2.3. Letting C denote the normalizing constant, we have∫ η

0
π(κi|Xi)dκi = C

∫ η

0
exp

(
−κiX

2
i

2

)
κ
b−1/2
i (1− κi)an−1dκi

≥ C
∫ ηδ

0
exp

(
−κiX

2
i

2

)
κ
b−1/2
i (1− κi)an−1dκi

≥ C exp

(
−ηδ

2
X2
i

)∫ ηδ

0
κ
b−1/2
i dκi

= C exp

(
−ηδ

2
X2
i

)(
b+

1

2

)−1
(ηδ)b+

1

2 . (A5)

Also, since b ∈ (12 ,∞), κ
b−1/2
i is increasing in κi on (0, 1).∫ 1

η
π(κi|Xi)dκi = C

∫ 1

η
exp

(
−κiX

2
i

2

)
κ
b−1/2
i (1− κi)an−1dκi

≤ C exp

(
−ηX

2
i

2

)∫ 1

η
κ
b−1/2
i (1− κi)an−1dκi

≤ C exp

(
−ηX

2
i

2

)∫ 1

η
(1− κi)an−1dκi

= C exp

(
−ηX

2
i

2

)
a−1n (1− η)an . (A6)
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Combining (A5) and (A6), we have

Pr(κi > η|Xi) ≤

∫ 1

η
π(κi|Xi)dκi∫ η

0
π(κi|Xi)dκi

≤
(
b+ 1

2

)
(1− η)an

an(ηδ)b+
1

2

exp

(
−η(1− δ)

2
X2
i

)
.

A.2. Proofs for Section 3.3

Our proof methods follow those of [2–4], except our arguments rely on control of the
sequence of hyperparameters an, rather than on specifying a rate or an estimate for a
rescaling parameter τ , as in the class of priors (5). Moreover, we make explicit use of
Theorems 2.1-2.3 in the present manuscript in our proofs.

Proof of Theorem 3.1. By Theorem 2.1, the event
{
E(1− κi|Xi) >

1
2

}
implies the

event {
eX

2
i /2

(
an

an + b+ 1/2

)
>

1

2

}
⇔

{
X2
i > 2 log

(
an + b+ 1/2

2an

)}
.

Therefore, noting that under H0i, Xi ∼ N (0, 1) and using Mill’s ratio, i.e. P (|Z| >
x) ≤ 2φ(x)

x , we have

t1i ≤ Pr

(
X2
i > 2 log

(
an + b+ 1/2

2an

) ∣∣∣∣H0i is true

)
= Pr

(
|Z| >

√
2 log

(
an + b+ 1/2

2an

))

≤
2φ

(√
2 log

(
an+b+1/2

2an

))
√

2 log
(
an+b+1/2

2an

)
=

2
√

2an√
π(an + b+ 1/2)

[
log

(
an + b+ 1/2

2an

)]−1/2
. (A7)

Proof of Theorem 3.2. By definition, the probability of a Type I error for the ith
decision is given by

t1i = Pr

[
E(1− κi|Xi) >

1

2

∣∣∣∣H0i is true

]
.

Fix ξ ∈ (0, 1/2). By Theorem 2.3,

E(κi|Xi) ≤ ξ +

(
b+ 1

2

)
(1− ξ)an

an(ξδ)b+
1

2

exp

(
−ξ(1− δ)

2
X2
i

)
.
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Hence,{
E(1− κi|Xi) >

1

2

}
⊇

{(
b+ 1

2

)
(1− ξ)an

an(ξδ)b+
1

2

exp

(
−ξ(1− δ)

2
X2
i

)
<

1

2
− ξ

}
.

Thus, using the definition of t1i and noting that under H0i, Xi ∼ N (0, 1), as n→∞,

t1i ≥ Pr

((
b+ 1

2

)
(1− ξ)an

an(ξδ)b+
1

2

exp

(
−ξ(1− δ)

2
X2
i

)
<

1

2
− ξ

∣∣∣∣ H0i is true

)

= Pr

(
X2
i >

2

ξ(1− δ)

[
log

( (
b+ 1

2

)
(1− ξ)an

an(ξδ)b+
1

2

(
1
2 − ξ

))])

= 2 Pr

Z >

√√√√ 2

ξ(1− δ)

[
log

( (
b+ 1

2

)
(1− ξ)an

an(ξδ)b+
1

2

(
1
2 − ξ

))]


= 2

1− Φ


√√√√ 2

ξ(1− δ)

[
log

( (
b+ 1

2

)
(1− ξ)an

an(ξδ)b+
1

2

(
1
2 − ξ

))]
 ,

where for the second to last inequality, we used the fact that an → 0 as n→∞, and
the fact that both ξ and ξδ ∈ (0, 12), so that the log(·) term in final equality is greater
than zero for sufficiently large n.

Before proving the asymptotic upper bound on Type II error in Theorem 3.3, we
first prove a lemma that bounds the quantity E(κi|Xi) from above for a single Xi.

Lemma A.1. Suppose we observe X ∼ N (θ, In) and we place an NBPn prior (10)
on θ, with and an ∈ (0, 1) where an → 0 as n → ∞, and fixed b ∈ (1/2,∞). Fix
constants η ∈ (0, 1), δ ∈ (0, 1), and d > 2. Then for a single observation x and any
n, the posterior shrinkage coefficient E(κ|x) can be bounded above by a measurable,
non-negative real-valued function hn(x), given by

hn(x) =

{
Cn,η

[
x2
∫ x2

0 tb−1/2e−t/2dt
]−1

+
(b+ 3

2)
−1

(1−η)an
an(ηδ)b+3/2 exp

(
−η(1−δ)

2 x2
)
, if |x| > 0,

1, if x = 0,
(A8)

where Cn,η = (1− η)an−1Γ
(
b+ 3

2

)
2b+3/2. For any ρ > 2

η(1−δ) , hn(x) also satisfies

lim
n→∞

sup

|x|>
√
ρ log

(
1

an

)hn(x) = 0. (A9)

Proof of Lemma A.1. We first focus on the case where |x| > 0. Fix η ∈ (0, 1), δ ∈
(0, 1), and observe that

E(κ|x) = E(κ1{κ < η}|x) + E(κ1{κ ≥ η}|x). (A10)

We consider the two terms in (A10) separately. To bound the first term, we have from
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(9) and the fact that (1− κ)an−1 is increasing in κ ∈ (0, 1) for an ∈ (0, 1) that

E(κ1{κ < η}) =

∫ η
0 κ · κ

b−1/2(1− κ)an−1e−κx
2/2dκ∫ 1

0 κ
b−1/2(1− κ)an−1e−κx2/2dκ

≤ (1− η)an−1
∫ η
0 κ

b+1/2e−κx
2/2dκ∫ 1

0 κ
b−1/2e−κx2/2dκ

= (1− η)an−1
1

x2

∫ ηx2

0 tb+1/2e−t/2dt∫ x2

0 tb−1/2e−t/2dt

≤ (1− η)an−1
1

x2

∫∞
0 tb+1/2e−t/2dt∫ x2

0 tb−1/2e−t/2dt

= C(n)

[
x2
∫ x2

0
tb−1/2e−t/2dt

]−1
:= h1(x) (say), (A11)

where we use a change of variables t = κx2 in the second equality, and C(n) =
(1− η)an−1Γ

(
b+ 3

2

)
2b+3/2.

To bound the second term in (A10) from above, we follow the same steps as the

proof of Theorem 2.3, except we replace κ
b−1/2
i in the numerators of the integrands

with κ
b+1/2
i to obtain an upper bound,(

b+ 3
2

)
(1− η)an

an(ηδ)b+3/2
exp

(
−η(1− δ)

2
x2
)

:= h2(x) (say). (A12)

Combining (A10)-(A12), we set hn(x) = h1(x)+h2(x) for any |x| > 0, and we easily
see that for any x 6= 0 and fixed n, E(κ|x) ≤ hn(x). On the other hand, if x = 0, then

E(κ|x) =

∫ 1
0 κ

b+1/2(1− κ)an−1dκ∫ 1
0 κ

b−1/2(1− κ)an−1dκ
=

b+ 1/2

an + b+ 1/2
≤ 1,

so we can set hn(x) = 1 when x = 0. Therefore, E(κ|x) is bounded above by the
function hn(x) in (A8) for all x ∈ R.

Now, observe from (A11) that for fixed n, h1(x) is strictly decreasing in |x|. There-
fore,

sup

|x|>
√
ρ log

(
1

an

)h1(x) ≤ Cn,η

[
ρ log

(
1

an

)∫ ρ log
(

1

an

)
0

tb−1/2e−t/2dt

]−1
,

for any fixed n and ρ > 0. Since an → 0 as n→∞, this implies that

lim
n→∞

sup

|x|>
√
ρ log

(
1

an

)h1(x) = 0. (A13)
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Letting K ≡ K(b, η, δ) =
(
b+ 3

2

)
/(ηδ)b+3/2, we have from (A12) and the fact that

0 < an < 1 for all n and an → 0 as n→ 0 that

lim
n→∞

h2

(√
ρ log

(
1

an

))
= K lim

n→∞

(1− η)an

an

√
ρ log

(
1

an

)
e
− η(1−δ)

2
ρ log

(
1

an

)

≤ K√ρ lim
n→∞

1

an

√
log

(
1

an

)
e−

η(1−δ)
2

log(a−ρ
n )

= K
√
ρ lim
n→∞

√
log

(
1

an

)
(an)

η(1−δ)
2

(
ρ− 2

η(1−δ)

)

=

{
0 if ρ > 2

η(1−δ) ,

∞ otherwise,

from which it follows that

lim
n→∞

sup

|x|>
√
ρ log

(
1

an

)h2(x) =

{
0 if ρ > 2

η(1−δ) ,

∞ otherwise.
(A14)

Combining (A13) and (A14), it is clear that

lim
n→∞

sup

|x|>
√
ρ log

(
1

an

)hn(x) =

{
0 if ρ > 2

η(1−δ) ,

∞ otherwise,

that is, hn(x) satisfies (A9).

Proof of Theorem 3.3. Fix η ∈ (0, 1) and δ ∈ (0, 1), and choose any ρ > 2
η(1−δ) . By

Lemma A.1, we have that the event {E(κi|Xi) ≥ 0.5} implies {hn(Xi) ≥ 0.5}, where
hn(x) is as defined in (A8). Therefore,

t2i = Pr[E(κi|Xi) ≥ 0.5
∣∣H1i is true]

≤ Pr(hn(Xi) ≥ 0.5
∣∣H1i is true)

= Pr

(
hn(Xi) ≥ 0.5, |Xi| >

√
ρ log

(
1

an

) ∣∣∣∣H1i is true

)
+

Pr

(
hn(Xi) ≥ 0.5, |Xi| ≤

√
ρ log

(
1

an

) ∣∣∣∣H1i is true

)

≤ Pr

(
hn(Xi) ≥ 0.5

∣∣∣∣|Xi| >

√
ρ log

(
1

an

)
, H1i is true

)
+

Pr

(
|Xi| ≤

√
ρ log

(
1

an

) ∣∣∣∣H1i is true

)
(A15)
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We will consider the two terms in (A15) separately. Recall that hn(x) from (A8) is a
measurable and nonnegative. We also see that (A8) is decreasing in |x|, and thus,

E

(
hn(Xi)

∣∣∣∣|Xi| >

√
ρ log

(
1

an

)
, H1i is true

)

is well-defined and bounded for sufficiently large n. By Markov’s inequality, we have
for sufficiently large n,

Pr

(
hn(Xi) ≥ 0.5

∣∣∣∣|Xi| >

√
ρ log

(
1

an

)
, H1i is true

)

≤ 2E

(
hn(Xi)

∣∣∣∣|Xi| >

√
ρ log

(
1

an

)
, H1i is true

)

≤ 2

 sup

|Xi|>
√
ρ log

(
1

an

)hn(Xi)

 ,

from which it follows, by Lemma A.1, that

lim
n→∞

Pr

(
hn(Xi) ≥ 0.5

∣∣∣∣|Xi| >

√
ρ log

(
1

an

)
, H1i is true

)
= 0. (A16)

By assumption, limn→∞
an
pn
∈ (0,∞). Thus, by the third and fourth conditions of

Assumption 1, we have limn→∞ log( 1
an

)/ψ2
n = C/2. To see this, note that 1−pn

pn
∼ 1

pn
.

Combining this with the third and fourth conditions implies that 2 log(1/pn)
ψ2
n

→ C, and

then we use our assumption that an/pn → d, d > 0. Thus, for all sufficiently large n,

Pr

(
|Xi| ≤

√
ρ log

(
1

an

) ∣∣∣∣H1i is true

)
= Pr

|Z| ≤ √ρ
√√√√ log

(
1
an

)
1 + ψ2

n



= Pr

|Z| ≤ √ρ
√√√√ log

(
1
an

)
ψ2
n

(1 + o(1))

 as n→∞

= Pr

(
|Z| ≤

√
ρC

2
(1 + o(1))

)
as n→∞

=

[
2Φ

(√
ρC

2

)
− 1

]
(1 + o(1)) as n→∞. (A17)
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Combining (A15)-(A17), we thus have

t2i ≤

[
2Φ

(√
ρC

2

)
− 1

]
(1 + o(1)),

as n→∞.

Proof of Theorem 3.4. By definition, the probability of a Type II error for the ith
decision is given by

t2i = P

(
E(1− κi) ≤

1

2

∣∣∣∣H1i is true

)
.

For any n, we have by Theorem 2.1 that{
eX

2
i /2

(
an

an + b+ 1/2

)
≤ 1

2

}
⊆
{
E(1− κi|Xi) ≤

1

2

}
.

Therefore,

t2i = Pr

(
E(1− κi|Xi) ≤

1

2

∣∣∣∣H1i is true

)
≥ Pr

(
eX

2
i /2

(
an

an + b+ 1/2

)
≤ 1

2

∣∣∣∣H1i is true

)
= Pr

(
X2
i ≤ 2 log

(
an + b+ 1/2

2an

) ∣∣∣∣H1i is true

)
. (A18)

Since Xi ∼ N(0, 1 +ψ2) under H1i, we have by the second condition in Assumption 1

that lim
n→∞

ψ2
n

1 + ψ2
n

→ 1. From (A18), we have for sufficiently large n,

t2i ≥ Pr

|Z| ≤
√√√√2 log

(
an+b+1/2

2an

)
ψ2

(1 + o(1))

 as n→∞

≥ Pr

|Z| ≤
√√√√ log

(
1

2an

)
ψ2

(1 + o(1))

 as n→∞

= Pr(|Z| ≤
√
C)(1 + o(1)) as n→∞

= 2[Φ(
√
C)− 1](1 + o(1)) as n→∞,

where we used the assumption that limn→∞
an
pn
∈ (0,∞) and Assumption 1.

Proof of Theorem 3.5. Fix η ∈ (0, 1), δ ∈ (0, 1), and ξ ∈ (0, 1/2), and choose
ρ > 2

η(1−δ) . Since the κi’s, i = 1, ..., n are a posteriori independent, the Type I and

Type II error probabilities t1i and t2i are the same for every test i, i = 1, ..., n. By
Theorems 3.1 and 3.2, we have for large enough n,
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2

1− Φ


√√√√ 2

ξ(1− δ)

[
log

( (
b+ 1

2

)
(1− ξ)an

an(ξδ)b+
1

2

(
1
2 − ξ

))]
 ≤ t1i

≤ 2
√

2an√
π(an + b+ 1/2)

[
log

(
an + b+ 1/2

2an

)]−1/2
.

Taking the limit as n→∞ of all the terms above, we have

lim
n→∞

t1i = 0 (A19)

for the ith test, under the assumptions on the hyperparameters an and b.
By Theorems 3.1 and 3.2, we also have

[
2Φ(
√
C)− 1

]
(1 + o(1)) ≤ t2i ≤

[
2Φ

(√
ρC

2

)
− 1

]
(1 + o(1)). (A20)

Therefore, we have by (A19) and (A20) that as n → ∞, the asymptotic risk (14) of
the classification rule (19), RNBP , can be bounded as follows:

np(2Φ(
√
C)− 1)(1 + o(1)) ≤ RNBP ≤ np

[
2Φ

(√
ρC

2

)
− 1

]
(1 + o(1). (A21)

Therefore, from (16) and (A21), we have as n→∞,

1 ≤ lim inf
n→∞

RNBP

RBOOpt
≤ lim sup

n→∞

RNBP

RBOOpt
≤

2Φ

(√
ρC
2

)
− 1

2Φ(
√
C)− 1

. (A22)

The testing rule (18) does not depend on how η ∈ (0, 1), δ ∈ (0, 1) and ρ > 2/(η(1−δ))
are chosen, and thus, the ratio RNBP /R

BO
Opt is also free of these constants. By continuity

of Φ, we can take the infimum over all ρ’s in the rightmost term in (A22), and the
inequalities remain valid. The infimum of ρ is obviously 2, and so from (A22), we have

1 ≤ lim inf
n→∞

RNBP

RBOOpt
≤ lim sup

n→∞

RNBP

RBOOpt
≤ 2Φ(

√
C)− 1

2Φ(
√
C)− 1

. (A23)

We clearly see from (A23) that classification rule (19) under the NBPn prior (10) is
ABOS, i.e.

RNBP

RBOOpt
→ 1 as n→∞.
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A.3. Proofs for Section 3.4

Our proofs in this section follow from the proof of Theorem 10 of [4], as well as
Theorems 2.1 through Theorem 2.3 established in this paper.

Proof of Theorem 3.6. Under thresholding rule (23), the probability of a Type I
error for the ith decision is given by

t̃1i = Pr

(
E(1− κi|Xi, â

ES
n ) >

1

2

∣∣∣∣H0i is true

)
= Pr

(
E(1− κi|Xi, â

ES
n ) >

1

2
, âESn ≤ 2αn

∣∣∣∣H0i is true

)
+ Pr

(
E(1− κi|Xi, â

ES
n ) >

1

2
, âESn > 2αn

∣∣∣∣H0i is true

)
, (A24)

where αn is defined in (24). To obtain an upper bound on t̃1i, we consider the two
terms in (A24) separately. By Theorem 2.1, we see that E(1− κi|Xi) is nondecreasing
in an. Thus, E(1− κi|Xi, â

ES
n ) ≤ E(1− κi|Xi, 2αn) whenever âESn ≤ 2αn. We have

Pr

(
E(1− κi|Xi, â

ES
n ) >

1

2
, âESn ≤ 2αn

∣∣∣∣H0i is true

)
≤ Pr

(
E(1− κi|Xi, 2αn) >

1

2

∣∣∣∣H0i is true

)
≤ 4αn√

π(2αn + b+ 1/2)

[
log

(
2αn + b+ 1/2

4αn

)]−1/2
(1 + o(1)). (A25)

For the second term in (A24), we have

Pr

(
E(1− κi|Xi, â

ES
n ) >

1

2
, âESn > 2αn

∣∣∣∣H0i is true

)
≤ Pr(âESn > 2αn|H0i is true)

≤ 1/
√
π

nc1/2
√

log n
+ e−(2 log 2−1)αn(1+o(1)), (A26)

where the last inequality follows from the proof of Theorem 10 in [4]. Thus, since
αn ∼ 2βpn by (25), we combine (A25) and (A26) to obtain an upper bound on t̃1i,

t̃1i ≤
4αn√

π(2αn + b+ 1/2)

[
log

(
2αn + b+ 1/2

4αn

)]−1/2
(1 + o(1))

+
1/
√
π

nc1/2
√

log n
+ e−2(2 log 2−1)βnpn(1+o(1)).

To obtain the lower bound, note that by (A24), we immediately have

t̃1i ≥ Pr

(
E(1− κi|Xi, â

ES
n ) >

1

2
, âESn ≤ 2αn

∣∣∣∣H0i is true

)
. (A27)
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By the proof for Theorem 3.2, we have that for fixed ξ ∈ (0, 1/2) and δ ∈ (0, 1),

E(κi|Xi) ≤ ξ +

(
b+ 1

2

)
(1− ξ)an

an(ξδ)b+
1

2

exp

(
−ξ(1− δ)

2
X2
i

)
. (A28)

The right-hand side of (A28) is a nonincreasing function in an. Thus, whenever âESn ≤
2αn, we have{
E(1− κi|Xi, ân) >

1

2
, âESn ≤ 2αn

}
⊇

{(
b+ 1

2

)
(1− ξ)2αn

2αn(ξδ)b+1/2
exp

(
−ξ(1− δ)

2
X2
i

)
<

1

2
− ξ

}
,

from which, by Theorem 3.2 and (A27), we automatically attain the lower bound,

t̃1i ≥ 1− Φ


√√√√ 2

ξ(1− δ)

[
log

((
b+ 1

2

)
(1− ξ)2αn

2αn(ξδ)b+1/2

)] (1 + o(1)) as n→∞.

Proof of Theorem 3.7. Fix γ ∈ (0, 1/c2). Decompose the probability of a Type II
error under (23) as

t̃2i = Pr

(
E(κi|Xi, â

ES
n ) ≥ 1

2

∣∣∣∣H1i is true

)

= Pr

(
E(κi|Xi, â

ES
n ) ≥ 1

2
, âESn ≤ γαn

∣∣∣∣H1i is true

)
+

Pr

(
E(κi|Xi, â

ES
n ) ≥ 1

2
, âESn > γαn

∣∣∣∣H1i is true

)
. (A29)

To obtain an upper bound on t̃2i, we consider the two terms in (A29) separately.
For the first term in (A29), we have

Pr

(
E(κi|Xi, â

ES
n ) ≥ 1

2
, âESn ≤ γαn

∣∣∣∣H1i is true

)
≤ Pr(âESn ≤ γαn|H1i is true)

≤ (1− c2γ)−2(1− αn)

nαn
(1 + o(1))

→ 0 as n→∞, (A30)

where the last two steps follow from the proof of Theorem 11 in [4].
We now focus on bounding the second term in (A29). By Theorem 2.1, E(1−κi|Xi)

is nondecreasing in an, and so E(κi|Xi) is nonincreasing in an. Thus, for sufficiently
large n, we have E(κi|Xi, â

ES
n ) ≤ E(κi|Xi, γαn) for âESn > γαn and that

{E(κi|Xi, γαn) ≥ 0.5|H1i is true} ⊆ {hn(Xi, γαn) ≥ 0.5|H1i is true} ,
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where hn(Xi, γαn) denotes that we substitute an with γαn in (A8). Using the same
arguments as in the proof of Theorem 3.3, along with the fact that αn ∼ 2βpn (by
(24)), we obtain as an upper bound for the second term in (A29),

Pr

(
E(κi|Xi, â

ES
n ) ≥ 1

2
, âESn > γαn

∣∣∣∣H1i is true

)
≤ Pr

(
E(κi|Xi, γαn) ≥ 1

2
|H1i is true

)
≤

[
2Φ

(√
ρC

2

)
− 1

]
(1 + o(1)) as n→∞. (A31)

From (A29)-(A31), an upper bound on the probability of Type II error under (23) is

t̃2i ≤

[
2Φ

(√
ρC

2

)
− 1

]
(1 + o(1)) as n→∞.

To obtain a lower bound on t̃2i, we note that by (A29),

t̃2i ≥ Pr

(
E(κi|Xi, â

ES
n ) ≥ 1

2
, âESn > γαn

∣∣∣∣H1i is true

)
≥ Pr

(
E(κi|Xi, â

ES
n ) ≥ 1

2

)
− Pr(âESn ≤ γαn)

→ 2
[
Φ(
√
C)− 1

]
(1 + o(1))− o(1),

where we use the result in Theorem 3.4, the fact that E(κi|Xi) is nondecreasing in an,
and the fact that Pr(âESn ≤ γαn) is asymptotically vanishing (by (A30)) to arrive at
the final inequality.

Appendix B. Sampling from the NBP Model

B.1. No Prior on the Hyperparameter a

Suppose that there is no prior placed on the hyperparameter a. By the reparametriza-
tion of σ2i = λiξi, i = 1, . . . , n, given in (A1) and letting κi = 1/(1 + λiξi), the full
conditional distributions for (6) are

θi
∣∣ rest ∼ N

(
(1− κi)Xi, 1− κi

)
, i = 1, ..., n,

λi
∣∣ rest ∼ GIG

(
θ2i
ξi
, 2, a− 1

2

)
, i = 1, ..., n,

ξi
∣∣ rest ∼ IG

(
b+ 1

2 ,
θ2i
2λi

+ 1
)
, i = 1, ..., n,

(B1)

where GIG(c, d, p) denotes a generalized inverse Gaussian (giG) density with
f(x; c, d, p) ∝ x(p−1)e−(c/x+dx)/2. Therefore, the NBP model (6) – and consequently,
thresholding rules (19) and (23) – can be implemented straightforwardly with Gibbs
sampling utilizing the full conditionals in (B1). Moreover, since the full conditionals
are independent, we can update the θi’s, λi’s, and ξi’s efficiently using block updates.
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B.2. Uniform Prior on the Hyperparameter a

In the case that a prior is placed on a, the steps for sampling from the full conditionals
for (θi, λi, ξi), i = 1, . . . , n from (B1) remain the same. However, we now also need to
sample from the full conditional of a. When a ∼ U(1/n, 1), the full conditional for a
is proportional to

π(a|rest) ∝
(

Γ(a+ b)

Γ(a)

)n( n∏
i=1

(σ2i )
a−1(1 + σ2i )

−a−b

)
I{1/n ≤ a ≤ 1}, (B2)

where σ2i = λiξi. Using (B2), we update a using a Metropolis-Hastings random walk.
For our proposal distribution, we use a truncated normal density on the interval
[1/n, 1]. If a is the current value of the chain, a new value a∗ will be generated from
the proposal distribution,

q(a∗|a) =
φ
(
a∗−a
ω

)
ω
(

Φ
(
1−a
ω

)
− Φ

(
1/n−a
ω

))I{1/n ≤ a∗ ≤ 1}, (B3)

where φ(·) and Φ(·) denote the standard normal probability density function (pdf) and
cumulative distribution function (cdf) respectively, and ω > 0 is a scaling parameter
that is properly calibrated to control the Metropolis-Hastings acceptance rate. Given
a candidate state a∗ drawn from q(a∗|a), it then follows from (B2) and (B3) that a∗

is accepted with probability,

min

1,

(
Γ(a∗ + b)Γ(a)

Γ(a+ b)Γ(a∗)

)n( n∏
i=1

(
σ2i

1 + σ2i

)a∗−a) Φ
(
1−a
ω

)
− Φ

(
1/n−a
ω

)
Φ
(
1−a∗

ω

)
− Φ

(
1/n−a∗

ω

)
 ,

where σ2i , i = 1, . . . , n, is taken as the product of the λi and ξi from the most recent
Gibbs sampling updates for (λi, ξi), i = 1, . . . , n. We tune ω so that the acceptance
rate is between 20 and 40 percent.

B.3. Truncated Cauchy Prior on the Hyperparameter a

If we place a truncated Cauchy prior on a where a ∈ [1/n, 1], i.e. π(a) = [arctan(1)−
arctan(1/n)]−1(1 + a)−1I{1/n < a < 1}, the full conditional for a is proportional to

π(a|rest) ∝
(

Γ(a+ b)

(1 + a)Γ(a)

)n( n∏
i=1

(σ2i )
a−1(1 + σ2i )

−a−b

)
I{1/n ≤ a ≤ 1}. (B4)

As before, we use Metropolis-Hastings to update a. We use the truncated normal
density q(a∗|a) from (B3) as the proposal distribution. Given a candidate state a∗

drawn from q(a∗|a) in (B3), it follows from (B4) that a∗ is accepted with probability,

min

1,

(
(1 + a)Γ(a∗ + b)Γ(a)

(1 + a∗)Γ(a+ b)Γ(a∗)

)n( n∏
i=1

(
σ2i

1 + σ2i

)a∗−a) Φ
(
1−a
ω

)
− Φ

(
1/n−a
ω

)
Φ
(
1−a∗

ω

)
− Φ

(
1/n−a∗

ω

)
 ,
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where σ2i , i = 1, . . . , n, is taken as the product of the λi and ξi from the most recent
Gibbs sampling updates for (λi, ξi), i = 1, . . . , n. We tune ω so that the acceptance
rate is between 20 and 40 percent.

B.4. Convergence of the MCMC Algorithm

To assess the convergence and the mixing of the MCMC algorithms for the hierarchical
Bayes approaches described in Sections D.2 and D.3, we consider two chains with

different starting values: 1) θ
(0)
i = −15, i = 1, . . . , n, and 2) θ

(0)
i = 15, i = 1, . . . , n. In

our simulation studies, the true θ0 was generated from

θ0i
iid∼ (1− p)δ0 + pN (0, ψ2), i = 1, . . . , n,

with ψ =
√

2 log(500) = 3.53. Thus, these initial values for θ
(0)
i , i = 1, . . . , n, are

all far away from a ‘typical’ value of θ0i. We found that in both cases, the MCMC
algorithms still converged very rapidly (usually within 100 iterations), giving very
similar posterior estimates for θ after discarding the first 5000 iterations as burnin.

To illustrate this, we plot in Figure B1 the history plots for one nonzero coefficient
(θ0i = 7.225) and one null coefficient (θ0i = 0) when the sparsity level is p = 0.2.
For the nonnull coefficient, we see that the chains mix well and rapidly converge to a
stationary distribution centered around the true value of θ0i. For the null coefficient,
the chains rapidly converge to a stationary distribution centered around zero.

Figure B1. History plots of the 10,000 draws from the MCMC algorithm for the NBP-UNIF (top panel) and

NBP-TC models (bottom panel) for a single θ0i. The plots on the left are for a θ0i whose true value is equal
to 7.225, and the plots on the right are for a θ0i whose true value is equal to 0.
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Appendix C. Comparison Between Posterior Inclusion Probabilities and
Posterior Shrinkage Weights

If (p, ψ) were known, then a natural thresholding rule for selection of nonnull values in
θ would be to threshold the posterior inclusion probabilities, π(νi = 1|Xi), i = 1, . . . , n,
for the two-groups model (11). That is, we would reject H0i if π(νi = 1|Xi) > 0.5. In
our paper, we have used the posterior shrinkage weights E(1− κi|X1, . . . , Xn) in (19)
as a proxy for these posterior inclusion probabilities, and one may wonder how well
the shrinkage weights approximate the true inclusion probabilities.

Taking different choices of p ∈ {0.05, 0.10, 0.20, 0.30}, we plot in Figures C1 and
Figure C2 the theoretical posterior inclusion probabilities ωi(Xi) = P (νi = 1|Xi) for
the two-groups model (11) given by

ωi(Xi) = π(νi = 1|Xi) =

{(
1− p
p

)√
1 + ψ2e−

X2
i
2

ψ2

1+ψ2 + 1

}−1
,

along with the shrinkage weights E(1 − κi|âES , Xi), E(1 − κi|âREML, Xi), and
E(1−κi|X1, . . . , Xn) for the NBP-ES, NBP-REML, NBP-UNIF, and NBP-TC models.
These plots shows that for small values of the sparsity level p, the shrinkage weights
are in close proximity to the posterior inclusion probabilities. This offers empirical
support for the use of these posterior shrinkage weights as an approximation to the
corresponding posterior inclusion probabilities ωi(Xi) in sparse situations.
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Figure C1. Comparison between the posterior inclusion probabilities ωi(Xi) = π(νi = 1|Xi) and the pos-

terior shrinkage weights E(1− κi|âES , Xi), E(1− κi|âREML, Xi). The solid circles are the posterior inclusion

probabilities, while the empty triangles correspond to NBP-ES and the empty squares correspond to NBP-
REML.
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Figure C2. Comparison between the posterior inclusion probabilities ωi(Xi) = π(νi = 1|Xi) and the poste-

rior shrinkage weights E(1− κi|X1, . . . , Xn) under the hierarchical Bayes approaches. The solid circles are the
posterior inclusion probabilities, while the empty circles correspond to NBP-UNIF and the empty upside-down
triangles correspond to NBP-TC.
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