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Abstract

We introduce the spike-and-slab group lasso (SSGL) for Bayesian estimation and
variable selection in linear regression with grouped variables. We further extend the
SSGL to sparse generalized additive models (GAMs), thereby introducing the first
nonparametric variant of the spike-and-slab lasso methodology. Our model simultane-
ously performs group selection and estimation, while our fully Bayes treatment of the
mixture proportion allows for model complexity control and automatic self-adaptivity
to different levels of sparsity. We develop theory to uniquely characterize the global
posterior mode under the SSGL and introduce a highly efficient block coordinate
ascent algorithm for maximum a posteriori (MAP) estimation. We further employ
de-biasing methods to provide uncertainty quantification of our estimates. Thus, im-
plementation of our model avoids the computational intensiveness of Markov chain
Monte Carlo (MCMC) in high dimensions. We derive posterior concentration rates
for both grouped linear regression and sparse GAMs when the number of covari-
ates grows at nearly exponential rate with sample size. Finally, we illustrate our
methodology through extensive simulations and data analysis.
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1 Introduction

1.1 Regression with Grouped Variables

Group structure arises in many statistical applications. For example, in multifactor analysis

of variance, multi-level categorical predictors are each represented by a group of dummy

variables. In genomics, genes within the same pathway may form a group at the pathway or

gene set level and act in tandem to regulate a biological system. In each of these scenarios,

the response Yn×1 can be modeled as a linear regression problem with G groups:

Y =
G∑
g=1

Xgβg + ε, (1.1)

where ε ∼ Nn(0, σ2In), βg is a coefficients vector of lengthmg, andXg is an n×mg covariate

matrix corresponding to group g = 1, . . . G. Even in the absence of grouping information

about the covariates, the model (1.1) subsumes a wide class of important nonparametric

regression models called generalized additive models (GAMs). In GAMs, continuous covari-

ates may be represented by groups of basis functions which have a nonlinear relationship

with the response. We defer further discussion of GAMs to Section 5.

It is often of practical interest to select groups of variables that are most significantly

associated with the response. To facilitate this group-level selection, Yuan and Lin (2006)

introduced the group lasso, which solves the optimization problem,

arg minβ

1

2
‖Y −

G∑
g=1

Xgβg‖22 + λ
G∑
g=1

√
mg‖βg‖2, (1.2)

where || · ||2 is the `2 norm. In the frequentist literature, many variants of model (1.2) have

been introduced, which use some combination of `1 and `2 penalties on the coefficients of

interest (e.g., Jacob et al. (2009), Li et al. (2015), Simon et al. (2013)).
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In the Bayesian framework, selection of relevant groups under model (1.1) is often done

by placing spike-and-slab priors on each of the groups βg (e.g., Xu and Ghosh (2015),

Liquet et al. (2017), Yang and Narisetty (2019), Ning et al. (2019)). These priors typically

take the form,

π(β|γ) =
G∏
g=1

[(1− γg)δ0(βg) + γgπ(βg)],

π(γ|θ) =
G∏
g=1

θγg(1− θ)1−γg ,

θ ∼ π(θ),

(1.3)

where γ is a binary vector that indexes the 2G possible models, θ ∈ (0, 1) is the mixing

proportion, δ0 is a point mass at 0mg ∈ Rmg (the “spike”), and π(βg) is an appropriate

“slab” density (typically a multivariate normal distribution or a scale-mixture multivariate

normal density). With a well-chosen prior on θ, this model will favor parsimonious models

in very high dimensions, thus avoiding the curse of dimensionality.

1.2 The Spike-and-Slab Lasso

For Bayesian variable selection, point mass spike-and-slab priors (1.3) are interpretable, but

they are computationally intractable in high dimensions, due in large part to the combina-

torial complexity of updating the discrete indicators γ. As an alternative, fully continuous

variants of spike-and-slab models have been developed. For continuous spike-and-slab mod-

els, the point mass spike δ0 is replaced by a continuous density heavily concentrated around

0mg . This not only mimics the point mass but it also facilitates more efficient computation,

as we describe later.

In the context of sparse normal means estimation and univariate linear regression,
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Ročková (2018) and Ročková and George (2018) introduced the univariate spike-and-slab

lasso (SSL). The SSL places a mixture prior of two Laplace densities on the individual

coordinates βj, i.e.

π(β|θ) =

p∏
j=1

[(1− θ)ψ(βj|λ0) + θψ(βj|λ1)], (1.4)

where θ ∈ (0, 1) is the mixing proportion and ψ(·|λ) denotes a univariate Laplace density

indexed by hyperparameter λ, i.e. ψ(β|λ) = λ
2
e−λ|β|. Typically, we set λ0 � λ1 so that

the spike is heavily concentrated about zero. Unlike (1.3), the SSL model (1.4) does not

place any mass on exactly sparse vectors. Nevertheless, the global posterior mode under

the SSL prior may be exactly sparse. Meanwhile, the slab stabilizes posterior estimates of

the larger coefficients so they are not downward biased. Thus, the SSL posterior mode can

be used to perform variable selection and estimation simultaneously.

The spike-and-slab lasso methodology has now been adopted for a wide number of

statistical problems. Apart from univariate linear regression, it has been used for factor

analysis (Ročková and George (2016), Moran et al. (2019)), multivariate regression (Desh-

pande et al. (2019)), covariance/precision matrix estimation (Deshpande et al. (2019), Gan

et al. (2019), Li et al. (2019)), causal inference (Antonelli et al. (2019)), generalized linear

models (GLMs) (Tang et al. (2017b), Tang et al. (2018)), and Cox proportional hazards

models (Tang et al. (2017a)).

While the SSL (1.4) induces sparsity on individual coefficients (through the posterior

mode), it does not account for group structure of covariates. For inference with structured

data in GLMs, Tang et al. (2018) utilized the univariate spike-and-slab lasso prior (1.4)

for grouped data where each group had a group-specific sparsity-inducing parameter, θg,

instead of a single θ for all coefficients. However, this univariate SSL prior does not feature

the “all in, all out” selection property of the original group lasso of Yuan and Lin (2006)

4



or the grouped and multivariate SSL prior, which we develop in this work.

In this paper, we introduce the spike-and-slab group lasso (SSGL) for Bayesian grouped

regression and variable selection. Under the SSGL prior, the global posterior mode is

exactly sparse, thereby allowing the mode to automatically threshold out insignificant

groups of coefficients. To widen the use of spike-and-slab lasso methodology for situations

where the linear model is too inflexible, we extend the SSGL to sparse generalized additive

models by introducing the nonparametric spike-and-slab lasso (NPSSL). To our knowledge,

our work is the first to apply the spike-and-slab lasso methodology outside of a parametric

setting. Our contributions can be summarized as follows:

1. We propose a new group spike-and-slab prior for estimation and variable selection

in both parametric and nonparametric settings. Unlike frequentist methods which

rely on separable penalties, our model has a non-separable and self-adaptive penalty

which allows us to automatically adapt to ensemble information about sparsity.

2. We introduce a highly efficient block coordinate ascent algorithm for global posterior

mode estimation. This allows us to rapidly identify significant groups of coefficients,

while thresholding out insignificant ones.

3. We show that de-biasing techniques that have been used for the original lasso (Tib-

shirani, 1996) can be extended to our SSGL model to provide valid inference on the

estimated regression coefficients.

4. For both grouped regression and sparse additive models, we derive near-optimal poste-

rior contraction rates for both the regression coefficients β and the unknown variance

σ2 under the SSGL prior.
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The rest of the paper is structured as follows. In Section 2, we introduce the spike-and-slab

group lasso (SSGL). In Section 3, we characterize the global posterior mode and introduce

efficient algorithms for fast maximum a posteriori (MAP) estimation and variable selection.

In Section 4, we utilize ideas from the de-biased lasso to perform inference on the SSGL

model. In Section 5, we extend the SSGL to nonparametric settings by proposing the

nonparametric spike-and-slab lasso (NPSSL). In Section 6, we present asymptotic theory

for the SSGL and the NPSSL. Finally, in Sections 7 and 8, we provide extensive simulation

studies and use our models to analyze real data sets.

1.3 Notation

We use the following notations. For two nonnegative sequences {an} and {bn}, we write

an � bn to denote 0 < lim infn→∞ an/bn ≤ lim supn→∞ an/bn <∞. If limn→∞ an/bn = 0, we

write an = o(bn) or an ≺ bn. We use an . bn or an = O(bn) to denote that for sufficiently

large n, there exists a constant C > 0 independent of n such that an ≤ Cbn. For a vector

v ∈ Rp, we let ‖v‖1 :=
∑p

i=1 |vi|, ‖v‖2 :=
√∑p

i=1 v
2
i , and ‖v‖∞ := max1≤i≤p |vi| denote the

`1, `2, and `∞ norms respectively. For a symmetric matrix A, we let λmin(A) and λmax(A)

denote its minimum and maximum eigenvalues.

2 The Spike-and-Slab Group Lasso

Let βg denote a real-valued vector of length mg. We define the group lasso density as

Ψ(βg|λ) = Cgλ
mg exp (−λ‖βg‖2) , (2.1)

where Cg = 2−mgπ−(mg−1)/2 [Γ ((mg + 1)/2)]−1. This prior has been previously considered

by Kyung et al. (2010) and Xu and Ghosh (2015) for Bayesian inference in the grouped
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regression model (1.1). Kyung et al. (2010) considered a single prior (2.1) on each of the

βg’s, while Xu and Ghosh (2015) employed (2.1) as the slab in the point-mass mixture

(1.3). These authors implemented their models using MCMC.

In this manuscript, we introduce a continuous spike-and-slab prior with the group lasso

density (2.1) for both the spike and the slab. The continuous nature of our prior is critical

in facilitating efficient coordinate ascent algorithms for MAP estimation that allow us to

bypass the use of MCMC. Letting β = (βT1 , . . . ,β
T
G)T under model (1.1), the spike-and-slab

group lasso (SSGL) is defined as:

π(β|θ) =
G∏
g=1

[(1− θ)Ψ(βg|λ0) + θΨ(βg|λ1)] , (2.2)

where Ψ(·|λ) denotes the group lasso density (2.1) indexed by hyperparameter λ, and

θ ∈ (0, 1) is a mixing proportion. λ0 corresponds to the spike which shrinks the entire

vector βg towards 0mg , while λ1 corresponds to the slab. For shorthand notation, we

denote Ψ(βg|λ0) as Ψ0(βg) and Ψ(βg|λ1) as Ψ1(βg) going forward.

Under the grouped regression model (1.1), we place the SSGL prior (2.2) on β. In

accordance with the recommendations of Moran et al. (2019), we do not scale our prior by

the unknown σ. Instead, we place an independent Jeffreys prior on σ2, i.e.

π(σ2) ∝ σ−2. (2.3)

The mixing proportion θ in (2.2) can either be fixed deterministically or endowed with a

prior θ ∼ π(θ). We will discuss this in detail in Section 3.
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3 Characterization and Computation of the Global

Posterior Mode

Throughout this section, we let p denote the total number of covariates, i.e. p =
∑G

g=1mg.

Our goal is to find the maximum a posteriori estimates of the regression coefficients β ∈ Rp.

This optimization problem is equivalent to a penalized likelihood method in which the log-

arithm of the prior (2.2) may be reinterpreted as a penalty on the regression coefficients.

Similarly to Ročková and George (2018), we will leverage this connection between the

Bayesian and frequentist paradigms and introduce the SSGL penalty. This strategy com-

bines the adaptivity of the Bayesian approach with the computational efficiency of existing

algorithms in the frequentist literature.

A key component of the SSGL model is θ, the prior expected proportion of groups with

large coefficients. Ultimately, we will pursue a fully Bayes approach and place a prior on θ,

allowing the SSGL to adapt to the underlying sparsity of the data and perform an automatic

multiplicity adjustment Scott and Berger (2010). For ease of exposition, however, we will

first consider the case where θ is fixed, echoing the development of Ročková and George

(2018). In this situation, the regression coefficients βg are conditionally independent a

priori, resulting in a separable SSGL penalty. Later we will consider the fully Bayes

approach, which will yield the non-separable SSGL penalty.

Definition 1. Given θ ∈ (0, 1), the separable SSGL penalty is defined as

penS(β|θ) = log

[
π(β|θ)
π(0p|θ)

]
= −λ1

G∑
g=1

‖βg‖2 +
G∑
g=1

log

[
p∗θ(0mg)

p∗θ(βg)

]
(3.1)

where

p∗θ(βg) =
θΨ1(βg)

θΨ1(βg) + (1− θ)Ψ0(βg)
. (3.2)
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The separable SSGL penalty is almost the logarithm of the original prior (2.2); the

only modification is an additive constant to ensure that penS(0p|θ) = 0. The connection

between the SSGL and penalized likelihood methods is made clearer when considering the

derivative of the separable SSGL penalty, given in the following lemma.

Lemma 1. The derivative of the separable SSGL penalty satisfies

∂penS(β|θ)
∂‖βg‖2

= −λ∗θ(βg) (3.3)

where

λ∗θ(βg) = λ1p
∗
θ(βg) + λ0[1− p∗θ(βg)]. (3.4)

Similarly to the SSL, the SSGL penalty is a weighted average of the two regularization

parameters, λ1 and λ0. The weight p∗θ(βg) is the conditional probability that βg was drawn

from the slab distribution rather than the spike. Hence, the SSGL features an adaptive

regularization parameter which applies different amounts of shrinkage to each group, unlike

the group lasso which applies the same shrinkage to each group.

3.1 The Global Posterior Mode

Similarly to the group lasso (Yuan and Lin, 2006), the separable nature of the penalty

(3.1) lends itself naturally to a block coordinate ascent algorithm which cycles through

the groups. In this section, we first outline the group updates resulting from the Karush-

Kuhn-Tucker (KKT) conditions. The KKT conditions provide necessary conditions for the

global posterior mode. We then derive a more refined condition for the global mode to aid

in optimization for multimodal posteriors.
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Following Huang et al. (2012), we assume that within each group, covariates are or-

thonormal, i.e. XT
g Xg = nImg for g = 1, . . . , G. If this assumption does not hold, then the

Xg matrices can be orthonormalized before fitting the model. As noted by Breheny and

Huang (2015), orthonormalization can be done without loss of generality since the resulting

solution can be transformed back to the original scale.

Proposition 1. The necessary conditions for β̂ = (β̂T1 , . . . , β̂
T
G)T to be a global mode are:

XT
g (Y −Xβ̂) = σ2λ∗θ(β̂g)

β̂g
‖βg‖2

for β̂g 6= 0mg , (3.5)

‖XT
g (Y −Xβ̂)‖2 ≤ σ2λ∗θ(β̂g) for β̂g = 0mg . (3.6)

Equivalently,

β̂g =
1

n

(
1− σ2λ∗θ(β̂g)

‖zg‖2

)
+

zg (3.7)

where zg = XT
g

[
Y −

∑
l 6=gXlβ̂l

]
.

Proof. Follows immediately from Lemma 1 and subdifferential Calculus.

The above characterization for the global mode is necessary, but not sufficient. A

more refined characterization may be obtained by considering the group-wise optimization

problem, noting that the global mode is also a maximizer of the gth group, keeping all

other groups fixed.

Proposition 2. The global mode β̂g = 0mg if and only if ‖zg‖2 ≤ ∆, where

∆ = inf
βg

{
n‖βg‖2

2
− σ2penS(β|θ)

‖βg‖2

}
. (3.8)
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The proof for Proposition 2 can be found in Section D.2 of the Supplementary Material.

Unfortunately, the threshold ∆ is difficult to compute. We instead find an approximation

to this threshold. An upper bound is simply that of the soft-threshold solution (3.7), with

∆ ≤ σ2λ∗(βg). However, when λ0 is large, this bound may be improved. Similarly to

Ročková and George (2018), we provide improved bounds on the threshold in Theorem 1.

This result requires the function h : Rmg → R, defined as:

h(βg) = [λ∗θ(βg)− λ1]2 +
2n

σ2
log p∗θ(βg).

Theorem 1. When (λ0 − λ1) > 2
√
n/σ and h(0mg) > 0, the threshold ∆ is bounded by:

∆L < ∆ < ∆U (3.9)

where

∆L =
√

2nσ2 log[1/p∗θ(0mg)]− σ4d+ σ2λ1, (3.10)

∆U =
√

2nσ2 log[1/p∗θ(0mg)] + σ2λ1, (3.11)

and

0 < d <
2n

σ2
−

(
n

σ2(λ0 − λ1)
−
√

2n

σ

)2

(3.12)

When λ0 is large, d → 0 and the lower bound on the threshold approaches the upper

bound, yielding the approximation ∆ = ∆U . We will ultimately use this approximation in

our block coordinate ascent algorithm.

3.2 The Non-Separable SSGL penalty

As discussed earlier, a key reason for adopting a Bayesian strategy is that it allows the

model to borrow information across groups and self-adapt to the true underlying sparsity
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in the data. This is achieved by placing a prior on θ, the proportion of groups with non-zero

coefficients. We now outline this fully Bayes strategy and the resulting non-separable SSGL

penalty. With the inclusion of the prior θ ∼ π(θ), the marginal prior for the regression

coefficients has the following form:

π(β) =

∫ 1

0

G∏
g=1

[θΨ1(βg) + (1− θ)Ψ0(βg)]dπ(θ) (3.13)

=

(
G∏
g=1

Cgλ
mg

1

)
e−λ1

∑G
g=1‖βg‖2

∫ 1

0

θG∏G
g=1 p

∗
θ(βg)

dπ(θ), (3.14)

The non-separable SSGL penalty is then defined similarly to the separable penalty, where

again we have centered the penalty to ensure penNS(0p) = 0.

Definition 2. The non-separable SSGL (NS-SSGL) penalty with θ ∼ π(θ) is defined as

penNS(β) = log

[
π(β)

π(0p)

]
= −λ1

G∑
g=1

‖βg‖2 + log

[ ∫ 1

0
θG/

∏G
g=1 p

∗
θ(βg)dπ(θ)∫ 1

0
θG/

∏G
g=1 p

∗
θ(0mg)dπ(θ)

]
. (3.15)

Although the penalty (3.14) appears intractable, intuition is again obtained by consid-

ering the derivative. Following the same line of argument as Ročková and George (2018),

the derivative of (3.14) is given in the following lemma.

Lemma 2.

∂penNS(β)

∂‖βg‖2
≡ λ∗(βg;β\g), (3.16)

where

λ∗(βg;β\g) = p∗(βg;β\g)λ1 + [1− p∗(βg;β\g)]λ0 (3.17)

and

p∗(βg;β\g) ≡ p∗θg(βg), with θg = E[θ|β\g]. (3.18)
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That is, the marginal prior from (3.14) is rendered tractable by considering each group

of regression coefficients separately, conditional on the remaining coefficients. Such a condi-

tional strategy is motivated by the group-wise updates for the separable penalty considered

in the previous section. Thus, our optimization strategy for the non-separable penalty will

be very similar to the separable case, except instead of a fixed value for θ, we will impute

the mean of θ conditioned on the remaining regression coefficients.

We now consider the form of the conditional mean, E[θ|β̂\g]. As noted by Ročková

and George (2018), when the number of groups is large, this conditional mean can be

replaced by E[θ|β̂]; we will proceed with the same approximation. For the prior on θ,

we will use the standard beta prior θ ∼ B(a, b). With the choices a = 1 and b = G for

these hyperparameters, this prior results in an automatic multiplicity adjustment for the

regression coefficients (Scott and Berger (2010)).

We now examine the conditional distribution π(θ|β̂). Suppose that the number of

groups with non-zero coefficients is q̂, and assume without loss of generality that the first

q̂ groups have non-zero coefficients. Then,

π(θ|β̂) ∝ θa−1(1− θ)b−1(1− θz)G−q̂
q̂∏
g=1

(1− θxg), (3.19)

with z = 1− λ1
λ0

and xg = (1− λ1
λ0
e‖β̂g‖2(λ0−λ1)). Similarly to Ročková and George (2018), this

distribution is a generalization of the Gauss hypergeometric distribution. Consequently,

the expectation may be written as

E[θ|β̂] =

∫ 1

0
θa(1− θ)b−1(1− θz)G−q̂

∏q̂
g=1(1− θxg)dθ∫ 1

0
θa−1(1− θ)b−1(1− θz)G−q̂

∏q̂
g=1(1− θxg)dθ

. (3.20)

While the above expression (3.20) appears laborious to compute, it admits a much simpler

form when λ0 is very large. Using a slight modification to the arguments of Ročková and
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George (2016), we obtain this simpler form in Lemma 3.

Lemma 3. Assume π(θ|β̂) is distributed according to (3.19). Let q̂ be the number of groups

with non-zero coefficients. Then as λ0 →∞,

E[θ|β̂] =
a+ q̂

a+ b+G
. (3.21)

The proof for Lemma 3 is in Section D.2 of the Supplementary Material. We note

that the expression (3.21) is essentially the usual posterior mean of θ under a beta prior.

Intuitively, as λ0 diverges, the weights p∗θ(βg) concentrate at zero and one, yielding the

familiar form for E[θ|β̂]. With this in hand, we are now in a position to outline the block

coordinate ascent algorithm for the non-separable SSGL.

3.3 Optimization

The KKT conditions for the non-separable SSGL penalty yield the following necessary

condition for the global mode:

β̂g ←
1

n

(
1−

σ2λ∗
θ̂
(β̂g)

‖zg‖2

)
+

zg, (3.22)

where zg = XT
g

[
Y −

∑
l 6=gXlβ̂l

]
and θ̂ is the mean (3.21), conditioned on the previous

value of β. As before, (3.22) is sufficient for a local mode, but not the global mode. When

p � n and λ0 is large, the posterior will be highly multimodal. As in the separable case,

we require a refined thresholding scheme that will eliminate some of these suboptimal local

modes from consideration. In approximating the group-wise conditional mean E[θ|β̂\g]

with E[θ|β̂], we do not require group-specific thresholds. Instead, we can use the threshold
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given in Proposition 2 and Theorem 1 where θ is replaced with the current update (3.21).

In particular, we shall use the upper bound ∆U in our block coordinate ascent algorithm.

Similarly to Ročková and George (2018), we combine the refined threshold, ∆U with

the soft thresholding operation (3.22), to yield the following update for β̂g at iteration k:

β(k)
g ←

1

n

(
1− σ2(k)λ∗(β

(k−1)
g ; θ(k))

‖zg‖2

)
+

zg I(‖zg‖2 > ∆U) (3.23)

where θ(k) = E[θ|β(k−1)]. Technically, θ should be updated after each group βg is updated.

In practice, however, there will be little change after one group is updated and so we will

update both θ and ∆U after every M iterations with a default value of M = 10.

With the Jeffreys prior π(σ2) ∝ σ−2, the error variance σ2 also has a closed form update:

σ2(k) ← ‖Y −Xβ
(k−1)‖22

n+ 2
. (3.24)

The complete optimization algorithm is given in Algorithm 1 of Section A.1 of the Supple-

mentary Material. The computational complexity of this algorithm is O(np) per iteration,

where p =
∑G

g=1mg. It takes O(nmg) operations to compute the partial residual zg for

the gth group, for a total cost of O(n
∑G

g=1mg) = O(np). Similarly, it takes O(np) cost to

compute the sum of squared residuals ‖Y −Xβ̂‖22 to update the variance parameter σ2.

The computational complexity of our algorithm matches that of the usual gradient descent

algorithms for lasso and group lasso (Friedman et al., 2010).

As a non-convex method, it is not guaranteed that SSGL will find the global posterior

mode, only a local mode. However, the refined thresholding scheme (Theorem 1) and a

warm start initialization strategy (described in detail in Section A.2 of the Supplementary

Material) enable SSGL to eliminate a number sub-optimal local modes from consideration

in a similar manner to Ročková and George (2018). To briefly summarize the initialization
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strategy, we tune λ0 from an increasing sequence of values, and we further scale λ0 by
√
mg for each gth group to ensure that the amount of penalization is on the same scale

for groups of potentially different sizes (Huang et al., 2012). Meanwhile, we keep λ1 fixed

at a small value so that selected groups have minimal shrinkage. See Section A.2 of the

Supplementary Material for detailed discussion of choosing (λ0, λ1).

4 Approaches to Inference

While the above procedure allows us to find the posterior mode of β, providing a measure

of uncertainty around our estimate is a challenging task. One possible solution is to run

MCMC where the algorithm is initialized at the posterior mode. By starting the MCMC

chain at the mode, the algorithm should converge faster. However, this is still not ideal,

as it can be computationally burdensome in high dimensions. Instead, we will adopt ideas

from a recent line of research (van de Geer et al. (2014), Javanmard and Montanari (2018))

based on de-biasing estimates from high-dimensional regression. These ideas were derived

in the context of lasso regression, and we will explore the extent to which they work for the

SSGL penalty. Define Σ̂ = XTX/n and let Θ̂ be an approximate inverse of Σ̂. We define

β̂d = β̂ + Θ̂XT (Y −Xβ̂)/n. (4.1)

where β̂ is the MAP estimator of β under the SSGL model. By van de Geer et al. (2014),

this quantity β̂d has the following asymptotic distribution:

√
n(β̂d − β) ∼ N (0, σ2Θ̂Σ̂Θ̂T ). (4.2)

For our inference procedure, we replace the population variance σ2 in (4.2) with the modal

estimate σ̂2 from the SSGL model. To estimate Θ̂, we utilize the nodewise regression
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approach developed in Meinshausen and Bühlmann (2006) and van de Geer et al. (2014).

We describe this estimation procedure for Θ̂ in Section A.3 of the Supplementary Material.

Let β̂dj denote the jth coordinate of β̂d. We have from (4.2) that the 100(1 − α)%

asymptotic pointwise confidence intervals for βj, j = 1, . . . , p, are

[β̂dj − c(α, n, σ̂2), β̂dj + c(α, n, σ̂2)], (4.3)

where c(α, n, σ̂2) := Φ−1(1 − α/2)

√
σ̂2(Θ̂Σ̂Θ̂T )jj/n and Φ(·) denotes the cdf of N (0, 1).

It should be noted that our posterior mode estimates should have less bias than existing

estimates such as the group lasso. Therefore, the goal of the de-biasing procedure is less

about de-biasing the posterior mode estimates, and more about providing an estimator

with an asymptotic normal distribution from which we can perform inference.

To assess the ability of this procedure to obtain accurate confidence intervals (4.3) with

α = 0.05, we run a small simulation study with n = 100, G = 100 or n = 300, G = 300,

and each of the G groups having m = 2 covariates. We generate the covariates from

a multivariate normal distribution with mean 0 and an AR(1) covariance structure with

correlation ρ. The two covariates from each group are the linear and squared term from the

original covariates. We set the first seven elements of β equal to (0, 0.5, 0.25, 0.1, 0, 0, 0.7)

and the remaining elements equal to zero. Lastly, we try ρ = 0 and ρ = 0.7. Table 1 shows

the coverage probabilities across 1000 simulations for all scenarios looked at. We see that

important covariates, i.e. covariates with a nonzero corresponding βj, have coverage near

0.85 when n = 100 under either correlation structure, though this increases to nearly the

nominal rate when n = 300. The remaining covariates (null covariates) achieve the nominal

level regardless of the sample size or correlation present.
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ρ Important covariates Null covariates

n = 100, G = 100 0.0 0.83 0.93

0.7 0.85 0.94

n = 300, G = 300 0.0 0.93 0.95

0.7 0.92 0.95

Table 1: Coverage probabilities for de-biasing simulation.

5 Nonparametric Spike-and-Slab Lasso

We now introduce the nonparametric spike-and-slab lasso (NPSSL). The NPSSL allows for

flexible modeling of a response surface with minimal assumptions regarding its functional

form. We consider two cases for the NPSSL: (i) a main effects only model, and (ii) a model

with both main and interaction effects.

5.1 Main Effects

We first consider the main effects NPSSL model. Here, we assume that the response surface

may be decomposed into the sum of univariate functions of each of the p covariates. That

is, we have the following model:

yi =

p∑
j=1

fj(Xij) + εi, εi ∼ N (0, σ2). (5.1)

Following Ravikumar et al. (2009), we assume that each fj, j = 1, . . . , p, may be approxi-

mated by a linear combination of basis functions Bj = {gj1, . . . , gjd}, i.e.,

fj(Xij) ≈
d∑

k=1

gjk(Xij)βjk (5.2)
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where βj = (βj1, . . . , βjd)
T are the unknown weights. Let X̃j denote the n× d matrix with

the (i, k)th entry X̃j(i, k) = gjk(Xij). Then, (5.1) may be represented in matrix form as

Y − δ =

p∑
j=1

X̃jβj + ε, ε ∼ Nn(0, σ2In), (5.3)

where δ is a vector of the lower-order truncation bias. Note that we assume the response

Y has been centered and so we do not include a grand mean µ in (5.3). Thus, we do not

require the main effects to integrate to zero as in Wei et al. (2020). We do, however, require

the matrices X̃j, j = 1, . . . , p, to be orthogonal, as discussed in Section 3. Note that the

entire design matrix does not need to be orthogonal; only the group-specific matrices need

to be. We can enforce this in practice by either using orthonormal basis functions or by

orthornormalizing the X̃j matrices before fitting the model.

We assume that Y depends on only a small number of the p covariates so that many of

the fj’s have a negligible contribution to (5.1). This is equivalent to assuming that most

of the weight vectors βj have all zero elements. If the jth covariate is determined to be

predictive of Y , then fj has a non-negligible contribution to (5.1). In this case, we want

to include the entire basis function approximation to fj in the model.

The above situation is a natural fit for the SSGL. We have p groups where each group

is either included as a whole or not included in the model. The design matrices for each

group are exactly the matrices of basis functions, X̃j, j = 1, . . . , p. We will utilize the non-

separable SSGL penalty developed in Section 3.2 to enforce this group-sparsity behavior in

the model (5.3). More specifically, we seek to maximize the objective function with respect

to β = (βT1 , . . . ,β
T
p )T ∈ Rpd and σ2:

L(β, σ2) = − 1

2σ2
‖Y −

p∑
j=1

X̃jβj‖22 − (n+ 2) log σ + penNS(β). (5.4)
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To find the estimators of β and σ2, we use Algorithm 1 in Section A.1 of the Supplementary

Material. Similar additive models have been proposed by a number of authors including

Ravikumar et al. (2009) and Wei et al. (2020). However, our proposed NPSSL method

has a number of advantages. First, we allow the noise variance σ2 to be unknown, unlike

Ravikumar et al. (2009). Accurate estimates of σ2 are important to avoid overfitting the

noise beyond the signal. Secondly, we use a block-descent algorithm to quickly target

the modes of the posterior, whereas Wei et al. (2020) utilize MCMC. Finally, our SSGL

algorithm automatically thresholds negligible groups to zero, negating the need for a post-

processing thresholding step.

5.2 Main and Interaction Effects

The main effects model (5.1) allows for each covariate to have a nonlinear contribution to

the model, but assumes a linear relationship between the covariates. In some applications,

this assumption may be too restrictive. For example, in the environmental exposures data

which we analyze in Section 8.2, we may expect high levels of two toxins to have an even

more adverse effect on a person’s health than high levels of either of the two toxins. Such

an effect may be modeled by including interaction effects between the covariates.

Here, we extend the NPSSL to include interaction effects. We consider only second-

order interactions between the covariates, but our model can easily be extended to include

even higher-order interactions. We assume that the interaction effects may be decomposed

into the sum of bivariate functions of each pair of covariates, yielding the model:

yi =

p∑
j=1

fj(Xij) +

p−1∑
k=1

p∑
l=k+1

fkl(Xik, Xil) + εi, εi ∼ N (0, σ2). (5.5)

For the interaction terms, we follow Wei et al. (2020) and approximate fkl using the
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outer product of the basis functions of the interacting covariates:

fkl(Xik, Xil) ≈
d∗∑
s=1

d∗∑
r=1

gks(Xik)glr(Xil)βklsr (5.6)

where βkl = (βkl11, . . . , βkl1d∗ , βkl21, . . . , βkld∗d∗)T ∈ Rd∗2 is the vector of unknown weights.

We let X̃kl denote the n× d∗2 matrix with rows

X̃kl(i, ·) = vec(gk(Xik)gl(Xil)
T ),

where gk(Xik) = (gk1(Xik), . . . , gkd∗(Xik))
T . Then, (5.5) may be represented in matrix form

as

Y − δ =

p∑
j=1

X̃jβj +

p−1∑
k=1

p∑
l=k+1

X̃klβkl + ε, ε ∼ Nn(0, σ2In), (5.7)

where δ is a vector of the lower-order truncation bias. We again assume Y has been

centered and so do not include a grand mean in (5.7). We do not constrain fkl to integrate

to zero as in Wei et al. (2020). However, we do ensure that the main effects are not in

the linear span of the interaction functions. That is, we require the “main effect” matrices

X̃l and X̃k to be orthogonal to the “interaction” matrix X̃kl. This condition is needed to

maintain identifiability for both the main and interaction effects in the model. In practice,

we enforce this condition by setting the interaction design matrix to be the residuals of the

regression of X̃k ◦ X̃l on X̃k and X̃l.

Note that the current representation does not enforce strong hierarchy. That is, inter-

action terms can be included even if their corresponding main effects are removed from the

model. However, the NPSSL model can be easily modified to accommodate strong hierar-

chy. If hierarchy is desired, the “interaction” matrices can be augmented to contain both

main and interaction effects, as in Lim and Hastie (2015), i.e. the “interaction” matrices
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in (5.7) would be X̃aug
kl = [X̃k, X̃l, X̃kl], instead of simply X̃kl. This augmented model

is overparameterized since the main effects still have their own separate design matrices

as well (to ensure that main effects can still be selected even if βaug
kl = 0). However, this

ensures that interaction effects are only selected if the corresponding main effects are also

in the model.

In the interaction model, we either include βkl in the model (5.7) if there is a non-

negligible interaction between the kth and lth covariates, or we estimate β̂kl = 0d∗2 if such

an interaction is negligible. With the non-separable SSGL penalty, the objective function

is:

L(β, σ2) = − 1

2σ2
‖Y −

p∑
j=1

X̃jβj −
p−1∑
k=1

p∑
l=k+1

X̃klβkl‖22 + penNS(β)

− (n+ 2) log σ, (5.8)

where β = (βT1 , . . . ,β
T
p ,β

T
12, . . .β

T
(p−1)p)

T ∈ Rpd+p(p−1)d∗2/2. We can again use Algorithm 1

in Section A.1 of the Supplementary Material to find the modal estimates of β and σ2.

6 Asymptotic Theory for the SSGL and NPSSL

In this section, we derive asymptotic properties for the separable SSGL and NPSSL models.

We first note some differences between our theory and the theory in Ročková and George

(2018). First, we prove joint consistency in estimation of both the unknown β and the

unknown σ2, whereas Ročková and George (2018) proved their result only for β, assuming

known variance σ2 = 1. Secondly, Ročková and George (2018) established convergence

rates for the global posterior mode and the full posterior separately, whereas we establish

a contraction rate εn for the full posterior only. Our rate εn satisfies εn → 0 as n → ∞
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(i.e. the full posterior collapses to the true (β, σ2) almost surely as n→∞), and hence, it

automatically follows that the posterior mode is a consistent estimator of (β, σ2). Finally,

we also derive a posterior contraction rate for nonparametric additive regression, not just

linear regression. All proofs for the theorems in this section can be found in Section D.3 of

the Supplementary Material.

6.1 Grouped Linear Regression

We work under the frequentist assumption that there is a true model,

Y =
G∑
g=1

Xgβ0g + ε, ε ∼ Nn(0, σ2
0In), (6.1)

where β0 = (βT01, . . . ,β
T
0G)T and σ2

0 ∈ (0,∞). Denote X = [X1, . . . ,XG] and β =

(βT1 , . . . ,β
T
G)T . Suppose we endow (β, σ2) under model (6.1) with the following prior:

π(β|θ) ∼
G∏
g=1

[(1− θ)Ψ(βg|λ0) + θΨ(βg|λ1)] ,

θ ∼ B(a, b),

σ2 ∼ IG(c0, d0),

(6.2)

where c0 > 0 and d0 > 0 are fixed constants and the hyperparameters (a, b) in the prior on

θ are to be chosen later.

Remark 1. In our implementation of the SSGL model, we endowed σ2 with an improper

prior, π(σ2) ∝ σ−2. This can be viewed as a limiting case of the IG(c0, d0) prior with

c0 → 0, d0 → 0. This improper prior is fine for implementation since it leads to a proper

posterior, but for our theoretical investigation, we require the priors on (β, σ2) to be proper.
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6.1.1 Posterior Contraction Rates

Let mmax = max1≤j≤Gmg and let p =
∑G

g=1mg. Let S0 be the set containing the indices of

the true nonzero groups, where S0 ⊆ {1, . . . , G} with cardinality s0 = |S0|. We make the

following assumptions:

(A1) Assume that G� n, log(G) = o(n), and mmax = O(logG/ log n).

(A2) The true number of nonzero groups satisfies s0 = o(n/ logG).

(A3) There exists a constant k > 0 so that λmax(X
TX) ≤ knα, for some α ∈ [1,∞).

(A4) Let ξ ⊂ {1, . . . , G}, and let Xξ denote the submatrix of X that contains the sub-

matrices with groups indexed by ξ. There exist constants ν1 > 0, ν2 > 0, and an

integer p̄ satisfying s0 = o(p̄) and p̄ = o(s0 log n), so that nν1 ≤ λmin(XT
ξ Xξ) ≤

λmax(X
T
ξ Xξ) ≤ nν2 for any model of size |ξ| ≤ p̄.

(A5) ‖β0‖∞ = O(logG).

Assumption (A1) allows the number of groups G and total number of covariates p to

grow at nearly exponential rate with sample size n. The size of each individual group may

also grow as n grows, but should grow at a slower rate than n/ log n. Assumption (A2)

specifies the growth rate for the true model size s0. Assumption (A3) bounds the eigenvalues

of XTX from above and is less stringent than requiring all the eigenvalues of the Gram

matrix (XTX/n) to be bounded away from infinity. Assumption (A4) ensures that XTX

is locally invertible over sparse sets. In general, conditions (A3)-(A4) are difficult to verify,

but they can be shown to hold with high probability for certain classes of matrices where

the rows of X are independent and sub-Gaussian (Mendelson and Pajor (2006), Raskutti
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et al. (2010)). Finally, Assumption (A5) places a restriction on the growth rate of the

maximum signal size for the true β0.

We now state our main theorem on the posterior contraction rates for the SSGL prior

(6.2) under model (6.1). Let P0 denote the probability measure underlying the truth (6.1)

and Π(·|Y ) denote the posterior distribution under the prior (6.2) for (β, σ2).

Theorem 2 (posterior contraction rates). Let εn =
√
s0 logG/n, and suppose that As-

sumptions (A1)-(A5) hold. Under model (6.1), suppose that we endow (β, σ2) with the

prior (6.2). For the hyperparameters in the B(a, b) prior on θ, we choose a = 1, b = Gc,

c > 2. Further, we set λ0 = (1− θ)/θ and λ1 � 1/n in the SSGL prior. Then

Π (β : ‖β − β0‖2 ≥M1σ0εn|Y )→ 0 a.s. P0 as n,G→∞, (6.3)

Π
(
β : ‖Xβ −Xβ0‖2 ≥M2σ0

√
nεn|Y

)
→ 0 a.s. P0 as n,G→∞, (6.4)

Π
(
σ2 : |σ2 − σ2

0| ≥ 4σ2
0εn|Y

)
→ 0 as n→∞, a.s. P0 as n,G→∞, (6.5)

for some M1 > 0,M2 > 0.

Remark 2. In the case where G = p and m1 = . . . = mG = 1, the `2 and prediction

error rates in (6.3)-(6.4) reduce to the familiar optimal rates of
√
s0 log p/n and

√
s0 log p

respectively.

Remark 3. Eq. (6.5) demonstrates that our model also consistently estimates the unknown

variance σ2, therefore providing further theoretical justification for placing an independent

prior on σ2, as advocated by Moran et al. (2019).

6.1.2 Dimensionality Recovery

Although the posterior mode is exactly sparse, the SSGL prior is absolutely continuous so

it assigns zero mass to exactly sparse vectors. To approximate the model size under the
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SSGL model, we use the following generalized notion of sparsity (Bhattacharya et al., 2015).

For ωg > 0, we define the generalized inclusion indicator and generalized dimensionality,

respectively, as

γωg(βg) = I(‖βg‖2 > ωg) and |γ(β)| =
G∑
g=1

γωg(βg). (6.6)

In contrast to Bhattacharya et al. (2015) and Ročková and George (2018), we allow the

threshold ωg to be different for each group, owing to the fact that the group sizes mg may

not necessarily all be the same. However, the ωg’s, g = 1, . . . , G, should still tend towards

zero as n increases, so that |γ(β)| provides a good approximation to #{g : βg 6= 0mg}.

Consider as the threshold,

ωg ≡ ωg(λ0, λ1, θ) =
1

λ0 − λ1
log

[
1− θ
θ

λ
mg

0

λ
mg

1

]
(6.7)

Note that for large λ0, this threshold rapidly approaches zero. Analogous to Ročková

(2018) and Ročková and George (2018), any vectors βg that satisfy ‖βg‖2 = ωg correspond

to the intersection points between the two group lasso densities in the separable SSGL prior

(2.2), or when the second derivative ∂2penS(β|θ)/∂‖βg‖22 = 0.5. The value ωg represents

the turning point where the slab has dominated the spike, and thus, the sharper the spike

(when λ0 is large), the smaller the threshold.

Using the notion of generalized dimensionality (6.6) with (6.7) as the threshold, we have

the following theorem.

Theorem 3 (dimensionality). Suppose that the same conditions as those in Theorem 2

hold. Then under (6.1), for sufficiently large M3 > 0,

sup
β0

Eβ0Π (β : |γ(β)| > M3s0|Y )→ 0 as n,G→∞. (6.8)
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Theorem 3 shows that the expected posterior probability that the generalized dimension

is a constant multiple larger than the true model size s0 is asymptotically vanishing. In

other words, the SSGL posterior concentrates on sparse sets.

6.2 Sparse Generalized Additive Models (GAMs)

Assume there is a true model,

yi =

p∑
j=1

f0j(Xij) + εi, εi ∼ N (0, σ2
0). (6.9)

where σ2
0 ∈ (0,∞). Throughout this section, we assume that all the covariates Xi =

(Xi1, . . . , Xip)
T have been standardized to lie in [0, 1]p and that f0j ∈ Cκ[0, 1], j = 1, . . . , p.

That is, the true functions are all at least κ-times continuously differentiable over [0, 1], for

some κ ∈ N. Suppose further that each f0j can be approximated by a linear combination

of basis functions {gj1, . . . , gjd}. In matrix notation, (6.9) can then be written as

Y =

p∑
j=1

X̃jβ0j + δ + ε, ε ∼ Nn(0, σ2
0In), (6.10)

where X̃j denotes an n× d matrix where the (i, k)th entry is X̃j(i, k) = gjk(Xij), the β0j’s

are d× 1 vectors of basis coefficients, and δ denotes an n× 1 vector of lower-order bias.

Denote X̃ = [X̃1, . . . , X̃p] and β = (βT1 , . . . ,β
T
p )T . Under (6.9), suppose that we endow

(β, σ2) in (6.10) with the prior (6.2). We have the following assumptions:

(B1) Assume that p� n, log p = o(n), and d � n1/(2κ+1).

(B2) The number of true nonzero functions satisfies s0 = o(min{n/ log p, n2κ/(2κ+1)}).

(B3) There exists a constant k1 > 0 so that for all n, λmax(X̃
TX̃) ≤ k1n.
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(B4) Let ξ ⊂ {1, . . . , p}, and let X̃ξ denote the submatrix of X̃ that contains the submatri-

ces indexed by ξ. There exists a constant ν1 > 0 and an integer p̄ satisfying s0 = o(p̄)

and p̄ = o(s0 log n), so that λmin(X̃T
ξ X̃ξ) ≥ nν1 for any model of size |ξ| ≤ p̄.

(B5) ‖β0‖∞ = O(log p).

(B6) The bias δ satisfies ‖δ‖2 .
√
s0nd

−κ.

Assumptions (B1)-(B5) are analogous to assumptions (A1)-(A5). Assumptions (B3)-(B4)

are difficult to verify but can be shown to hold if appropriate basis functions for the gjk’s are

used, e.g. cubic B-splines (Yoo and Ghosal (2016), Wei et al. (2020)). Finally, Assumption

(B6) bounds the approximation error incurred by truncating the basis expansions to be of

size d. This assumption is satisfied, for example, by B-spline basis expansions (Zhou et al.

(1998), Wei et al. (2020)).

Let P̃0 denote the probability measure underlying the truth (6.9) and Π(·|Y ) denote

the posterior distribution under NPSSL model with the prior (6.2) for (β, σ2) in (6.10).

Further, let f(Xi) =
∑p

j=1 fj(Xij) and f0(Xi) =
∑p

j=1 f0j(Xij), and define the empirical

norm ‖·‖n as

‖f − f0‖2n =
1

n

n∑
i=1

[f(Xi)− f0(Xi)]
2 .

Let F denote the infinite-dimensional set of all possible additive functions f =
∑p

j=1 fj,

where each fj can be represented by a d-dimensional basis expansion. In Raskutti et al.

(2012), it was shown that the minimax estimation rate for f0 =
∑p

j=1 f0j under squared `2

error loss is ε2n � s0 log p/n+ s0n
−2κ/(2κ+1). The next theorem establishes that the NPSSL

model achieves this minimax posterior contraction rate.
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Theorem 4 (posterior contraction rates). Let ε2n = s0 log p/n+s0n
−2κ/(2κ+1). Suppose that

Assumptions (B1)-(B6) hold. Under model (6.10), suppose that we endow (β, σ2) with the

prior (6.2) (replacing G with p). For the hyperparameters in the B(a, b) prior on θ, we

choose a = 1, b = pc, c > 2. Further, we set λ0 = (1 − θ)/θ and λ1 � 1/n in the SSGL

prior. Then

Π
(
f ∈ F : ‖f − f0‖n ≥ M̃1εn|Y

)
→ 0 a.s. P̃0 as n, p→∞, (6.11)

Π
(
σ2 : |σ2 − σ2

0| ≥ 4σ2
0εn|Y

)
→ 0 as n→∞, a.s. P̃0 as n, p→∞, (6.12)

for some M̃1 > 0.

Let the generalized dimensionality |γ(β)| be defined as before in (6.6) (replacing G with

p), with ωg from (6.7) as the threshold (replacing mg with d). The next theorem shows

that under the NPSSL, the expected posterior probability that the generalized dimension

size is a constant multiple larger than the true model size s0 asymptotically vanishes.

Theorem 5 (dimensionality). Suppose that the same conditions as those in Theorem 4

hold. Then under (6.10), for sufficiently large M̃2 > 0,

sup
β0

Ẽβ0Π
(
β : |γ(β)| > M̃2s0|Y

)
→ 0 as n, p→∞. (6.13)

7 Simulation Studies

In this section, we will evaluate our method in a number of settings. For the SSGL approach,

we fix λ1 = 1 and use cross-validation to choose from λ0 ∈ {1, 2, . . . , 100}. For the prior

θ ∼ B(a, b), we set a = 1, b = G so that θ is small with high probability. We will compare

our SSGL approach with the following methods:
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1. GroupLasso: the group lasso (Yuan and Lin, 2006)

2. BSGS: Bayesian sparse group selection (Chen et al., 2016)

3. SoftBart: soft Bayesian additive regression tree (BART) (Linero and Yang, 2018)

4. RandomForest: random forests (Breiman, 2001)

5. SuperLearner: super learner (van der Laan et al., 2007)

6. GroupSpike: point-mass spike-and-slab priors (1.3) placed on groups of coefficients1

In our simulations, we will look at the mean squared error (MSE) for estimating f(Xnew)

averaged over a new sample of data Xnew. We will also evaluate the variable selection

properties of the different methods using precision and recall, where precision = TP/(TP+

FP), recall = TP/(TP+FN), and TP, FP, and FN denote the number of true positives, false

positives, and false negatives respectively. Note that we will not show precision or recall

for the SuperLearner, which averages over different models and different variable selection

procedures and therefore does not have one set of variables that are deemed significant.

7.1 Sparse Semiparametric Regression

Here, we will evaluate the use of our proposed SSGL procedure in sparse semiparametric

regression with p continuous covariates. Namely, we implement the NPSSL main effects

model described in Section 5.1. In Section B of the Supplementary Material, we include

more simulation studies of the SSGL approach under both sparse and dense settings, as

1Code to implement GroupSpike is included in the Supplementary data. Due to the discontinuous prior,

GroupSpike is not amenable to a MAP finding algorithm and has to be implemented using MCMC.
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well as a simulation study showing that we are accurately estimating the residual variance

σ2.

We let n = 100, p = 300. We generate independent covariates from a standard uniform

distribution, and we let the true regression surface take the following form:

E(Y |X) = 5sin(πX1) + 2.5(X2
3 − 0.5) + eX4 + 3X5,

with variance σ2 = 1.

To implement the SSGL approach, we estimate the mean response as

E(Y |X) = X̃1β1 + · · ·+ X̃pβp,

where X̃j is a design matrix of basis functions used to capture the possibly nonlinear effect

of Xj on Y . For the basis functions in X̃j, j = 1, . . . , p, we use natural splines with degrees

of freedom d chosen from d ∈ {2, 3, 4} using cross-validation. Thus, we are estimating a

total of between 600 and 1200 unknown basis coefficients.

We run 1000 simulations and average all of the metrics considered over each simulated

data set. Figure 1 shows the results from this simulation study. The GroupSpike approach

has the best performance in terms of MSE, followed closely by SSGL, with the next best

approach being SoftBart. In terms of recall, the SSGL and GroupLasso approaches perform

the best, indicating the highest power in detecting the significant groups. This comes with

a loss of precision as the GroupSpike and SoftBart approaches have the best precision

among all methods.

Although the GroupSpike method performed best in this scenario, the SSGL method

was much faster. As we show in Section B.5 of the Supplementary Material, when p = 4000,

fitting the SSGL model with a sufficiently large λ0 takes around three seconds to run. This

is almost 50 times faster than running 100 MCMC iterations of the GroupSpike method
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Figure 1: Simulation results for semiparametric regression. The top left panel presents the

out-of-sample mean squared error, the top right panel shows the recall score to evaluate

variable selection, the bottom left panel shows the precision score, and the bottom right

panel shows the estimates from each simulation of f1(X1) for SSGL. The MSE for BSGS

is not displayed as it lies outside of the plot area.

(never mind the total time it takes for the GroupSpike model to converge). Our experiments

demonstrate that the SSGL model gives comparable performance to the “theoretically

ideal” point mass spike-and-slab in a fraction of the computational time.
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7.2 Interaction Detection

We now explore the ability of the SSGL approach to identify important interaction terms

in a nonparametric regression model. To this end, we implement the NPSSL model with

interactions from Section 5.2. We generate 25 independent covariates from a standard

uniform distribution with a sample size of 300. Data is generated from the model:

E(Y |X) = 2.5sin(πX1X2) + 2cos(π(X3 +X5)) + 2(X6 − 0.5) + 2.5X7,

with variance σ2 = 1. While this may not seem like a high-dimensional problem, we will

consider all two-way interactions, and there are 300 such interactions. The important

two-way interactions are between X1 and X2 and between X3 and X5. We evaluate the

performance of each method and examine the ability of SSGL to identify important inter-

actions while excluding all of the remaining interactions. Figure 2 shows the results for

this simulation setting. The SSGL, GL, GroupSpike, and SoftBart approaches all perform

well in terms of out-of-sample mean squared error, with GroupSpike slightly outperforming

the competitors. The SSGL also does a very good job at identifying the two important

interactions. The (X1, X2) interaction is included in 97% of simulations, while the (X3, X5)

interaction is included 100% of the time. All other interactions are included in only a small

fraction of simulated data sets.

8 Real Data Analysis

Here, we will illustrate the SSGL procedure in two distinct settings: 1) evaluating the

SSGL’s performance on a data set where n = 120 and p = 15, 000, and 2) identifying

important (nonlinear) main effects and interactions of environmental exposures. In Section
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Figure 2: Simulation results from the interaction setting. The left panel shows out-of-

sample MSE for each approach, while the right panel shows the probability of a two-way

interaction being included into the SSGL model for all pairs of covariates.

C of the Supplementary Material, we evaluate the predictive performance of our approach

on benchmark data sets where p < n, compared to several other state-of-the-other methods.

Our results show that in both the p � n and p < n settings, the SSGL maintains good

predictive accuracy.

8.1 Bardet-Biedl Syndrome Gene Expression Study

We now analyze a microarray data set consisting of gene expression measurements from

the eye tissue of 120 laboratory rats2. The data was originally studied by Scheetz et al.

(2006) to investigate mammalian eye disease, and later analyzed by Breheny and Huang

(2015) to demonstrate the performance of their group variable selection algorithm. In this

2Data accessed from the Gene Expression Omnibus www.ncbi.nlm.nih.gov/geo (accession no.

GSE5680).
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SSGL Group Lasso

# groups selected 12 83

10-fold CV error 0.012 (0.003) 0.017 (0.008)

Table 2: Results for SSGL and Group Lasso on the Bardet-Biedl syndrome gene expression

data set. In parentheses, we report the standard errors for the CV prediction error.

data, the goal is to identify genes which are associated with the gene TRIM32. TRIM32

has previously been shown to cause Bardet-Biedl syndrome (Chiang et al., 2006), a disease

affecting multiple organs including the retina.

The original data consists of 31,099 probe sets. Following Breheny and Huang (2015),

we included only the 5,000 probe sets with the largest variances in expression (on the

log scale). For these probe sets, we considered a three-term natural cubic spline basis

expansion, resulting in a grouped regression problem with n = 120 and p = 15, 000. We

implemented SSGL with regularization parameter values λ1 = 1 and λ0 ranging on an

equally spaced grid from 1 to 500. We compared SSGL with the group lasso (Yuan and

Lin, 2006), implemented using the R package gglasso (Yang and Zou, 2015).

As shown in Table 2, SSGL selected much fewer groups than the group lasso. Namely,

SSGL selected 12 probe sets, while the group lasso selected 83 probe sets. Moreover, SSGL

achieved a smaller 10-fold cross-validation error than the group lasso, albeit within range

of random variability (Table 2). These results demonstrate that the SSGL achieves strong

predictive accuracy, while also achieving the most parsimony. The probe IDs and gene

symbols for the groups selected by both SSGL and the group lasso are displayed in Table

2 of Section C.2 of the Supplementary Material. Interestingly, only four of the 12 probes

selected by SSGL were also selected by the group lasso.
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We next conducted gene ontology enrichment analysis on the group of genes found by

each of the methods using the R package clusterProfiler (Yu et al., 2012). This software

determines whether subsets of genes known to act in a biological process are overrepresented

in a group of genes, relative to chance. If such a subset is significant, the group of genes is

said to be “enriched” for that biological process. With a false discovery rate of 0.01, SSGL

had five enriched terms, while the group lasso had none. The terms for which SSGL was

enriched included RNA binding, a biological process with which the response gene TRIM32

is associated.3 These findings show the ability of SSGL to find biologically meaningful signal

in the data. Additional details for our gene ontology enrichment analysis can be found in

in Section C.2 of the Supplementary Material.

8.2 Environmental Exposures in the NHANES Data

Here, we analyze data from the 2001-2002 cycle of the National Health and Nutrition Exam-

ination Survey (NHANES), which was previously analyzed by Antonelli et al. (2019). We

aim to identify which organic pollutants are associated with changes in leukocyte telomere

length (LTL) levels. Telomeres are segments of DNA that help to protect chromosomes,

and LTL levels are commonly used as a proxy for overall telomere length. LTL levels have

previously been shown to be associated with adverse health effects (Haycock et al., 2014),

and recent studies within the NHANES data have found that organic pollutants can be

associated with telomere length (Mitro et al., 2015).

We use the SSGL approach to evaluate whether any of 18 organic pollutants are as-

sociated with LTL length and whether there are any significant interactions among the

pollutants also associated with LTL length. In addition to the 18 exposures, there are 18

3https://www.genecards.org/cgi-bin/carddisp.pl?gene=TRIM32 (accessed 03/01/20)
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Figure 3: Exposure response curves for each of the four exposures with significant main

effects identified by the model.

additional demographic variables which we adjust for in our model. We model the effects of

the 18 exposures on LTL length using spline basis functions with two degrees of freedom.

For the interaction terms, this leads to four terms for each pair of interactions, and we

orthogonalize these terms with respect to the main effects. In total, this leads to a data
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set with n = 1003 and p = 666.

Our model selects four significant main effects and six significant interaction terms. In

particular, PCB 3, PCB 11, Furan 1, and Furan 4 are identified as the important main

effects in the model. Figure 3 plots the exposure response curves for these exposures. We see

that each of these four exposures has a positive association with LTL length, which agrees

with results seen in Mitro et al. (2015) that saw positive relationships between persistent

organic pollutants and telomere length. Further, our model identifies more main effects

and more interactions than previous analyses of these data, e.g. Antonelli et al. (2019),

which could lead to more targeted future research in understanding how these pollutants

affect telomere length. Additional discussion and analysis of the NHANES data set can be

found in Section C.3 of the Supplementary Material.

9 Discussion

We have introduced the spike-and-slab group lasso (SSGL) model for variable selection and

linear regression with grouped variables. We also extended the SSGL model to generalized

additive models with the nonparametric spike-and-slab lasso (NPSSL). The NPSSL can

efficiently identify both nonlinear main effects and higher-order nonlinear interaction terms.

Moreover, our prior performs an automatic multiplicity adjustment and self-adapts to the

true sparsity pattern of the data through a non-separable penalty. For computation, we

introduced highly efficient coordinate ascent algorithms for MAP estimation and employed

de-biasing methods for uncertainty quantification. An R package implementing the SSGL

model can be found at https://github.com/jantonelli111/SSGL.

Although our model performs group selection, it does so in an “all-in-all-out” manner,
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similar to the original group lasso (Yuan and Lin, 2006). Future work will be to extend our

model to perform both group selection and within-group selection of individual coordinates.

We are currently working to extend the SSGL to perform bilevel selection.

We are also working to extend the nonparametric spike-and-slab lasso so it can adapt

to even more flexible regression surfaces than the generalized additive model. Under the

NPSSL model, we used cross-validation to tune a single value for the degrees of freedom.

In reality, different functions can have vastly differing degrees of smoothness, and it will be

desirable to model anisotropic regression surfaces while avoiding the computational burden

of tuning the individual degrees of freedom over a p-dimensional grid.

Acknowledgments

Dr. Ray Bai, Dr. Gemma Moran, and Dr. Joseph Antonelli contributed equally and wrote

this manuscript together, with input and suggestions from all other listed co-authors. The

bulk of this work was done when the first listed author was a postdoc at the Perelman School

of Medicine, University of Pennsylvania, under the mentorship of the last two authors.

The authors are grateful to three anonymous reviewers, the Associate Editor, and the

Editor whose thoughtful comments and suggestions helped to improve this manuscript. The

authors would also like to thank Ruoyang Zhang, Peter Bühlmann, and Edward George
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Moran, G. E., V. Roc̆ková, and E. I. George (2019). Spike-and-slab lasso biclustering.

preprint .
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Ročková, V. (2018). Bayesian estimation of sparse signals with a continuous spike-and-slab

prior. The Annals of Statistics 46 (1), 401–437.
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