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Theorems 3 and 4 of Bai and Ghosh [2] present posterior consistency results for their proposed
multivariate Bayesian model with shrinkage priors (MBSP). However, we found an error in the
proofs of these theorems (in the Supplementary Material [1]). Specifically, in the proof of Theorem
3, there is a mistake in (2.10) of the Supplement [1]. The center of bnjk is 0 but the center of X is

b0jk. The area in the first equation is not the area under the normal density function around the
center; however, the area in the second equation is the area under the normal density around the
center. Therefore, these areas are generally unequal except for when b0jk = 0, so the second “=”
does not hold. Since the step cannot go through, the subsequent inequalities cannot be achieved,
and the given proof of posterior consistency is incorrect. Similarly, the proof of Theorem 4, which
follows along much of the same lines, is not correct.

In this note, we provide a corrected proof of posterior consistency for the MBSP model. To
recall some of the notation from Bai and Ghosh [2], An ⊂ {1, . . . , pn} is the set of indices of
the true nonzero rows in the regression coefficients matrix B0, with cardinality sn = |An|. We
similarly define the complement of An as the set of indices of the true zero rows in B0, i.e. Ac

n ≡
{1, . . . , pn} \ An, which has cardinality pn − sn.

For simplicity, we only provide the corrected proof for Theorem 4 of Bai and Ghosh [2] in the
ultra high-dimensional case where pn ≫ n, ln(pn) = o(n), and sn = o(n/ ln(pn)). We note that
a correct proof for the low-dimensional case where pn ≤ n and pn = o(n) (Theorem 3 of Bai and

Ghosh [2]) is nearly identical to our proof for Theorem 4, except with the constant ∆̃ replaced
with ∆ from Theorem 3 of Bai and Ghosh [2]. Therefore, this note establishes the validity of both
Theorems 3 and 4 of Bai and Ghosh [2] and shows that the MBSP model achieves strong posterior
consistency, provided that pn grows at a sub-exponential rate with n.

We first state and prove two lemmas. Lemma 1 shows that a slowly varying function L(x)
has a polynomial tail asymptotically, while Lemma 2 establishes a lower bound for an upper-tail
probability for the hyperprior π in (3) of Bai and Ghosh [2].

Lemma 1. Assume that a positive measurable function L(x) is slowly varying, i.e. for each fixed
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a > 0, L(ax)/L(x) → 1 as x → ∞. Then for each ε ∈ (0, 1) and a > 1, there exists x0 such that

c1x
ln(1−ε)/ ln(a) ≤ L(x) ≤ c2x

ln(1+ε)/ ln(a) whenever x > x0,

for some constants c1, c2 > 0.

Proof of Lemma 1. By the definition of a slowly varying function, for each ε ∈ (0, 1) and a > 1,
there exists u0 so that |L(au)/L(u)− 1| < ε whenever u > u0. Thus, we have

L(u0)(1− ε) ≤ L(au0) ≤ L(u0)(1 + ε).

By induction, for all k ∈ N,

L(u0)(1− ε)k ≤ L(aku0) ≤ L(u0)(1 + ε)k. (1)

Note that aku > u0 for all k ∈ N since a > 1. Take x = aku0 so that k = ln(x/u0)/ ln(a). We can
then rewrite (1) as

L(u0)(1− ε)ln(x/u0)/ ln(a) ≤ L(x) ≤ L(u0)(1 + ε)ln(x/u0)/ ln(a),

and thus,

L(u0)

(
x

u0

) ln(1−ε)
ln(a)

≤ L(x) ≤ L(u0)

(
x

u0

) ln(1+ε)
ln(a)

.

Lemma 2. Suppose that ξ follows the hyperprior distribution π(ξ) in (3) of Bai and Ghosh [2],
i.e. π(ξ) = Kξ−a−1L(ξ), where L(·) is slowly varying and sn ln(pn) = o(n). Then

π(ξ > snpnn
ρ−1) > exp(−A1n/sn),

for some finite A1 > 0.

Proof of Lemma 2. By Lemma 1, there exists finite δ > 0 and K1 > 0 so that

π(ξ > snpnn
ρ−1) =

∫ ∞

snpnnρ−1

Ku−a−1L(u)du

≥
∫ ∞

snpnnρ−1

Ku−a−1K1u
−δdu

=
KK1

a+ δ
(snpnn

ρ−1)−a−δ

= exp
{
−(a+ δ) ln(pn)− (a+ δ) ln(snn

ρ−1) + ln(KK1/(a+ δ))
}

> exp(−A1n/sn),

for a sufficiently large A1 > 0. In the last line of the display, we used the fact that sn ln(pn) =
o(n).
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We now establish strong posterior consistency for the MBSP model of Bai and Ghosh [2] when
p ≫ n and sn ln(pn) = o(n). In our proof, we make an additional mild assumption that under
the hyperprior π(ξ) in Lemma 2 of this note, E(ξ) < ∞. Note that this assumption holds for all
practical examples for π(ξ) in scale-mixture shrinkage priors (see Table 1 of Bai and Ghosh [2]).

Proof of Theorem 4 of Bai and Ghosh [2]. In light of Theorem 2 of Bai and Ghosh [2], it is sufficient
to show that the marginal prior πn(Bn) satisfies

Πn

(
Bn : ∥Bn −B0∥F <

∆̃

nρ/2

)
> exp(−kn), (2)

for k > 0.
Using notation from Bai and Ghosh [2], we let bn

j ∈ Rq denote the jth row of Bn; analogously,

b0
j is the jth row of the true parameter B0. We let bnjk denote the kth entry of bn

j and b0jk denote

the kth entry of b0
j . Since the rows of Bn are independent,

πn(Bn) =

p∏
j=1

πn(b
n
j ).

Under the MBSP model, bn
j | ξj

ind∼ Nq(0q, τnξjΣ) for j ∈ {1, . . . , pn}. Therefore, the marginal
prior for πn(b

n
j ) is

πn(b
n
j ) =

∫ ∞

0

(2πτnξj)
−q/2|Σ|−1/2 exp

(
− 1

2ξjτn
∥Σ−1/2bn

j ∥22
)
π(ξj)dξj , (3)

where π(ξj) is the hyperprior on ξj as in Lemma 2 of this note. We have

Πn

(
Bn : ∥Bn −B0∥2F <

∆̃2

nρ

)
= Πn

Bn :
∑
j∈An

∥bn
j − b0

j∥22 +
∑
j∈Ac

n

∥bn
j ∥22 <

∆̃2

nρ


≥ Πn

Bn :
∑
j∈An

∥bn
j − b0

j∥22 <
∆̃2

2nρ
,
∑
j∈Ac

n

∥bn
j ∥22 <

∆̃2

2nρ


≥

 ∏
j∈An

Πn

(
bn
j : ∥bn

j − b0
j∥22 <

∆̃2

2snnρ

)
Πn

Bn :
∑
j∈Ac

n

∥bn
j ∥22 <

∆̃2

2nρ


≜ I1 × I2. (4)

We first bound I1 from below. In what follows, we let C1 and C2 be appropriate constants that do
not depend on n, while A1 is the constant from Lemma 2 of this note. From (3), we have

I1 =
∏

j∈An

Πn

(
bn
j : ∥bn

j − b0
j∥22 <

∆̃2

2snnρ

)

=
∏

j∈An

[∫ ∞

0

∫
∥bn

j −b0
j∥2

2<
∆̃2

2snnρ

(2πτnξj)
−q/2|Σ|−1/2 exp

(
− 1

2ξjτn
∥Σ−1/2bn

j ∥22
)
π(ξj)db

n
j dξj

]
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≥
∏

j∈An

[∫ ∞

0

∫
∥bn

j −b0
j∥2

2<
∆̃2

2snnρ

(2πτnξjd2)
−q/2 exp

(
−

∥bn
j ∥22

2ξjτnd1

)
π(ξj)db

n
j dξj

]

≥
∏

j∈An

q∏
k=1

[∫ ∞

0

∫
|bnjk−b0jk|2<

∆̃2

2qsnnρ

1√
2πτnξjd2

exp

(
−

(bnjk)
2

2ξjτnd1

)
π(ξj)db

n
jkdξj

]

=
∏

j∈An

q∏
k=1

∫ ∞

0

∫ b0jk+
∆̃√

2qsnnρ

b0jk−
∆̃√

2qsnnρ

1√
2πτnξjd2

exp

(
−

(bnjk)
2

2ξjτnd1

)
π(ξj)db

n
jkdξj


=
∏

j∈An

q∏
k=1

[∫ ∞

0

C1√
qτnξjsnnρ

exp

(
−

(b0jk)
2

2ξjτnd1

)
π(ξj)dξj

]
(1 + o(1))

≥
∏

j∈An

q∏
k=1

[∫ ∞

snpnnρ−1

C1√
qτnξjsnnρ

exp

(
−

(b0jk)
2

2ξjτnd1

)
π(ξj)dξj

]

≥
∏

j∈An

q∏
k=1

[
C1

C2
√
qτnsnnρ

exp

(
−

(b0jk)
2

2d1τnsnpnnρ−1

)∫ ∞

snpnnρ−1

π⋆(ξj)dξj

]
,

where π⋆(ξj) = C2ξ
−1/2
j π(ξj) and

∫ ∞

0

π⋆(ξj)dξj = 1,

>
∏

j∈An

q∏
k=1

[
C1

C2
√
qτnsnnρ

exp

(
− M2

2d1τnsnpnnρ−1

)
exp

(
−A1n

sn

)]

= exp

(
qsn

[
ln

(
C1

C2

)
− 1

2
ln(τn)−

1

2
ln(qsnn

ρ)− M2

2d1τnsnpnnρ−1
− A1n

sn

])
= exp

(
−qA1n− qM2

2d1τnpnnρ−1
+ qsn

[
ln

(
C1

C2

)
− 1

2
ln(τn)−

1

2
ln(qsnn

ρ)

])
. (5)

In the third line, we used Assumption (B5) of Bai and Ghosh [2] that 0 < d1 < λmin(Σ) ≤
λmax(Σ) < d2 < ∞. In the ninth line, we used Assumption (C2) of Bai and Ghosh [2] that

maxj,k|b0jk| ≤ M < ∞ and the fact that π⋆(ξj) := C2ξ
−1/2
j π(ξj) = C2ξ

−(a+1/2)−1
j L(ξ), where C2

is the normalizing constant to ensure that π⋆(ξj) is a valid probability density; therefore, we can
apply Lemma 2 to the integral term in the eighth line.

By Assumption (C3) of Bai and Ghosh [2], τn = o(p−1
n n−ρ), and by Assumption (B6) of Bai

and Ghosh [2], sn ln(pn) = o(n). Therefore, besides −qA1n, all the other terms in the exponent of
(5) are of order o(n). Noting that q is fixed (i.e. it does not depend on n) and the strict inequality
in the ninth line of the above display, we see from (5) that I1 in (4) can be bounded from below as

I1 > exp(−kn), (6)

for sufficiently large n. Next, we bound I2 in (4) from below. By Markov’s inequality and the fact
that bn

j | ξj ∼ Nq(0q, τnξjΣ) for j ∈ {1, . . . , pn}, we have

I2 = Πn

Bn :
∑
j∈Ac

n

∥bn
j ∥22 <

∆̃2

2nρ
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= 1−Πn

Bn :
∑
j∈Ac

n

∥bn
j ∥22 >

∆̃2

2nρ


= 1− E

Πn

Bn :
∑
j∈Ac

n

∥bn
j ∥22 >

∆̃2

2nρ

∣∣∣∣ ξ1, . . . , ξpn


≥ 1− E

2nρE
(∑

j∈Ac
n
∥bn

j ∥22 | ξ1, . . . , ξpn

)
∆̃2


= 1−

2nρτntr(Σ)E
(∑

j∈Ac
n
ξj

)
∆̃2

≥ 1− 2qd2τnn
ρ(pn − sn)E(ξ1)

∆̃2
→ 1 as n → ∞, (7)

where the last line of the display follows from Assumption (B5) of Bai and Ghosh [2] that 0 < d1 <
λmin(Σ) ≤ λmax(Σ) < d2 < ∞, Assumption (C3) of Bai and Ghosh [2] that τn = o(p−1

n n−ρ), and

our assumption that E(ξ) < ∞ when ξ ∼ π(ξ). Thus, 2qd2τnn
ρ(pn − sn)E(ξ1)/∆̃2 → 0 as n → ∞.

Combining (4)-(7), it is clear that for sufficiently large n,

Πn

(
Bn : ∥Bn −B0∥F <

∆̃

nρ/2

)
> exp(−kn),

i.e. we have established the prior mass condition (2). Strong posterior consistency for the MBSP
model now follows immediately from Theorem 2 of Bai and Ghosh [2].
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