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Supplementary Material for “Fast Bootstrapping Nonparametric Maximum Likelihood for Latent
Mixture Models”

Shijie Wang, Minsuk Shin, and Ray Bai

A. Sensitivity Analysis for Generator Architecture

We conduct a sensitivity analysis to study whether different
choices for the number of hidden layers L or the number of
hidden neurons h in the generator G affects GB-NPMLE’s per-
formance. We first fix L = 2 and vary h ∈ {50, 250, 500, 750}.
Next, we fix h = 500 and vary L ∈ {1, 2, 3, 4}.

We repeat all of the simulations described in Section III-
A of the main article 20 times and record the average per-
formance metrics (i.e. W1(π, π̂) and ISE). Our results are
summarized in Table I. We do not observe any significant dif-
ferences in the performance of GB-NPMLE for these different
combinations of (L, h). In practice, we recommend a default
choice of L = 2 and h = 500 for satisfactory performance.

TABLE I
SENSITIVITY ANALYSIS RESULTS

L = 2 h = 50 h = 250 h = 500 h = 750
Model W1(π, π̂) ISE W1(π, π̂) ISE W1(π, π̂) ISE W1(π, π̂) ISE
GMM 0.334 0.008 0.326 0.008 0.348 0.008 0.329 0.008
GaMM 0.032 0.223 0.032 0.282 0.032 0.263 0.032 0.245
PMM 0.413 0.033 0.380 0.028 0.400 0.045 0.386 0.030

h = 500 L = 1 L = 2 L = 3 L = 4
Model W1(π, π̂) ISE W1(π, π̂) ISE W1(π, π̂) ISE W1(π, π̂) ISE
GMM 0.330 0.008 0.348 0.008 0.331 0.008 0.332 0.008
GaMM 0.032 0.292 0.032 0.263 0.032 0.304 0.032 0.270
PMM 0.400 0.029 0.400 0.045 0.398 0.035 0.393 0.036

B. More Simulation Studies

We investigate the performance of GB-NPMLE under two
additional settings for the prior π: (iv) a trimodal density, and
(v) a bounded and skewed left density. Namely, we consider:
(iv) Gaussian trimodal mixture (GMM-tri): y | θ ∼ N (θ, 1)

and θ = 0.2N (−4, 0.5) + 0.6N (0, 1) + 0.2N (4, 0.5);
(v) Binomial-beta mixture (BBM): y | θ ∼ Binomial(10, θ)

and θ ∼ Beta(3, 2).
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Fig. 1. Results from one replication of Simulations (iv)-(v). In addition to
GB-NPMLE (solid red), bootstrapped NPMLE (dashed blue), and smoothed
NPMLE (solid green), we also plot the true density (solid black) and the
classical discrete NPMLE (dotted purple).
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As shown in Fig. 1, GB-NPMLE approximates the boot-
strapped NPMLE quite well for both GMM-tri and BBM.
GB-NPMLE and bootstrapped NPMLE also provide density
estimates that are close to the true π, whereas the smoothed
NPMLE with bandwidth chosen from LOOCV is once again
oversmoothed. A performance comparison of GB-NPMLE,
bootstrapped NPMLE, and smoothed NPMLE based on the
average of 20 replications is summarized in Table II.

TABLE II
COMPARISONS OF PERFORMANCE OF DIFFERENT NPMLE

METHODS

GB-NPMLE Bootstrapped NPMLE Smoothed NPMLE
Model W1(π, π̂) ISE W1(π, π̂) ISE W1(π, π̂) ISE

GMM-tri 0.213 0.058 0.273 0.071 0.908 0.031
BBM 0.033 0.059 0.035 0.055 0.109 0.320

C. Convergence Analysis

To empirically check the convergence of the proposed two-
stage algorithm, we plot the GB-NPMLE loss vs. epoch
number for training the generator G in Stage I. For Stage
II, we plot the log-likelihood vs. MCEM iteration number for
learning the multinomial weights τ . Fig. 2 plots these solution
paths for all 40 replications of the Gaussian and Gamma
mixture models (i.e. Experiments (i) and (ii) in Section III-A
of the main article), denoted as GMM and GaMM respectively.

Fig. 2 shows that Stage I converges quickly, typically
within 50 epochs. Meanwhile, Stage II converges even faster
– typically within one or two iterations, resulting in a very flat
solution path. The convergence plots for our other numerical
experiments were very similar to those in Fig. 2. Although
empirical evidence suggests that the GB-NPMLE two-stage
algorithm converges quickly, a rigorous theoretical analysis of
convergence rate should be done for future work.
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Fig. 2. Convergence plots for Stage I and Stage II of the two-stage algorithm
under the GMM and GaMM models (Section III-A of the main article).
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