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Abstract

Quantile regression and conditional density estimation can reveal structure that is missed
by mean regression, such as multimodality and skewness. In this paper, we introduce a deep
learning generative model for joint quantile estimation called Penalized Generative Quantile
Regression (PGQR). Our approach simultaneously generates samples from many random
quantile levels, allowing us to infer the conditional distribution of a response variable given
a set of covariates. Our method employs a novel variability penalty to avoid the problem of
vanishing variability, or memorization, in deep generative models. Further, we introduce a new
family of partial monotonic neural networks (PMNN) to circumvent the problem of crossing
quantile curves. A major benefit of PGQR is that it can be fit using a single optimization,
thus bypassing the need to repeatedly train the model at multiple quantile levels or use
computationally expensive cross-validation to tune the penalty parameter. We illustrate the
efficacy of PGQR through extensive simulation studies and analysis of real datasets. Code to
implement our method is available at https://github.com/shijiew97/PGQR.
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1 Introduction

Quantile regression is a popular alternative to classical mean regression (Koenker and Bassett Jr,

1982). For a response variable Y ∈ R and covariates X = (X1, X2, . . . , Xp)
⊤ ∈ Rp, we define the

τ -th conditional quantile, τ ∈ (0, 1), of Y given X as

QY |X(τ) = inf{y : FY |X(y) ≥ τ}, (1)

where FY |X is the conditional cumulative distribution function of Y given X. For a fixed quantile

level τ ∈ (0, 1), linear quantile regression aims to model (1) as QY |X(τ) = X⊤βτ . Linear quantile

regression is less sensitive to outliers than least squares regression and is more robust when the

assumption of independent and identically distributed (iid) Gaussian residual errors is violated

(Koenker and Hallock, 2001; Koenker et al., 2017). Thus, it is widely used for modeling het-

erogeneous covariate-response associations. To reveal complex nonlinear structures, nonparametric

quantile regression has also been proposed (Chaudhuri and Loh, 2002; Li et al., 2021; Koenker et al.,

1994). For some function class F , nonparametric quantile regression aims to estimate f(X, τ) ∈ F

for QY |X(τ) = f(X, τ) at a given quantile level τ . While quantile regression has traditionally

focused on estimating f(X, τ) at a single τ -th quantile, joint quantile regression aims to estimate

multiple quantile levels simultaneously for a set of K ≥ 2 quantiles {τ1, τ2, . . . , τK} (Zou and Yuan,

2008; Jiang et al., 2012; Xu et al., 2017).

Despite its flexibility, nonparametric quantile regression carries the risk that the estimated

curves at different quantile levels might cross each other. For instance, the estimate of the 95th

conditional quantile of Yi given covariates Xi might be smaller than the estimate of the 90th condi-

tional quantile. This is known as the crossing quantile phenomenon. The left two panels of Figure

3 illustrate the crossing problem. When quantile curves cross each other, the quantile estimates

violate the laws of probability and are not reasonable. To tackle this issue, many approaches have

been proposed, such as constraining the model space (Takeuchi et al., 2006; Sangnier et al., 2016;

Moon et al., 2021) or constraining the model parameters (Meinshausen, 2006; Cannon, 2018).

Recently in the area of deep learning, neural networks have also been applied to nonparamet-

ric quantile regression. Zhong and Wang (2023) introduced a semiparametric quantile regression

method where the covariates of primary interest are modeled linearly, while all other covariates
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are modeled nonparametrically by a neural network. Shen et al. (2021) proposed a deep quantile

regression (DQR) estimator to approximate the target conditional quantile function with compo-

sitional structure. Under the assumption that the conditional quantile function is a composition

of low-dimentional functions, DQR is shown to achieve the minimax optimal convergence rate.

Researchers have also used neural networks to learn multiple quantiles using composite quantile

loss functions. Cannon (2018) proposed the monotone composite quantile regression neural network

(MCQRNN) and achieved non-crossing quantiles by imposing monotone increasing bias parameters

for the neural network. Moon et al. (2021) recently introduced noncrossing multiple quantile

regression with neural networks (NMQN) and a scalable, efficient ℓ1-penalization algorithm to

fit NMQN. However, existing neural network-based approaches for joint quantile estimation are

restricted at a prespecified quantile set. If only several quantiles (e.g. the interquartiles τ ∈

{0.25, 0.5, 0.75}) are of interest, then these methods are adequate to produce desirable inference.

Otherwise, one typically has to refit the model at new quantiles or specify a large enough quantile

candidate set in order to infer the full conditional density p(Y | X). Dabney et al. (2018) introduced

the implicit quantile network (IQN), which takes a grid of quantile levels as inputs and approximates

the conditional density at any new quantile level. Unfortunately, IQN cannot guarantee that

quantile functions do not cross each other. More recently, Shen et al. (2022) constructed a quantile

regression process similar to IQN but which avoids crossing quantiles by imposing a positivity

constraint on the first derivatives.

Joint quantile regression is closely related to the problem of conditional density estimation

(CDE) of p(Y | X). Apart from traditional CDE methods that estimate the unknown probability

density curve (Izbicki and Lee, 2017; Pospisil and Lee, 2019), several deep generative approaches

besides IQN have also been proposed. Zhou et al. (2023) introduced the generative conditional

distribution sampler (GCDS), while Liu et al. (2021) introduced the Wasserstein generative con-

ditional sampler (WGCS) for CDE. GCDS and WGCS employ the idea of generative adversarial

networks (GANs) (Goodfellow et al., 2014) to generate samples from the conditional distribution

p(Y | X). In these deep generative models, random noise inputs are used to learn and generate

samples from the target distribution. However, a well-known problem with deep generative net-

works is that the generator may simply memorize the training samples instead of generalizing to

new test data (Arpit et al., 2017; van den Burg and Williams, 2021). When memorization occurs,

3



the random noise variable no longer reflects any variability, and the predicted density p(Y | X)

approaches a point mass. We refer to this phenomenon as vanishing variability.

To conduct joint quantile estimation as well as conditional density estimation, we propose a new

deep generative approach called penalized generative quantile regression (PGQR). PGQR employs a

novel variability penalty to avoid vanishing variability. We further guarantee the monotonicity (i.e.

non-crossing) of the estimated quantile functions from PGQR by designing a new family of partial

monotonic neural networks (PMNNs). The PMNN architecture ensures partial monotonicity with

respect to quantile inputs, while retaining the expressiveness of neural networks.

The performance of PGQR depends crucially on carefully choosing the variability penalty pa-

rameter λ, where λ lies in the range of [0, λmax] and λmax should be determined before optimization.

In all of our analyses, we chose λmax = exp(1). Unfortunately, common tuning procedures such as

cross-validation are impractical for deep learning, since this would involve repetitive evaluations of

the network for different training sets and choices of λ. Inspired by Shin et al. (2022), we construct

our deep generative network in such a way that λ is included as an additional random input. This

way, only a single optimization is needed to learn the neural network parameters, and then it is

effortless to generate samples from a set of candidate values for λ. We propose a criterion for

selecting the optimal choice of λ to generate the final desired samples from p(Y | X).

Our main contributions can be summarized as follows:

1. We propose a deep generative approach for joint quantile regression and conditional density

estimation called penalized generative quantile regression. PGQR simultaneously generates

samples from multiple random quantile levels, thus precluding the need to refit the model at

different quantiles.

2. We introduce a novel variability penalty to avoid the vanishing variability phenomenon in

deep generative models and apply this regularization technique to PGQR.

3. We construct a new family of partial monotonic neural networks (PMNNs) to circumvent the

problem of crossing quantile curves.

4. To facilitate scalable computation for PGQR and bypass computationally expensive cross-

validation for tuning the penalty parameter, we devise a strategy that allows PGQR to be

implemented using only a single optimization.

4



The rest of the article is structured as follows. Section 2 introduces the generative quantile re-

gression framework and our variability penalty. In Section 3, we introduce the PMNN family for

preventing quantile curves from crossing each other. Section 4 discusses scalable computation for

PGQR, namely how to tune the variability penalty parameter with only single-model training. In

Section 5, we demonstrate the utility of PGQR through simulation studies and analyses of addi-

tional real datasets. Section 6 concludes the paper with some discussion and directions for future

research. All proofs of propositions can be found in Section C of the Supplementary Material.

2 Penalized Generative Quantile Regression

2.1 Generative Quantile Regression

Before introducing PGQR, we first introduce our framework for generative quantile regression

(without variability penalty). Given n training samples (X1, Y1), (X2, Y2), . . . , (Xn, Yn) and quan-

tile level τ ∈ (0, 1), nonparametric quantile regression minimizes the empirical quantile loss,

argmin
f∈F

1

n

n∑
i=1

ρτ (Yi − f(Xi, τ)) , (2)

where ρτ (u) = u(τ−I(u < 0)) is the check function, and F is a function class such as a reproducing

kernel Hilbert space or a family of neural networks. Neural networks are a particularly attractive

way to model the quantile function f(X, τ) in (2), because they are universal approximators for

any Lebesgue integrable function (Lu et al., 2017).

In this paper, we model the quantile function in (2) using deep neural networks (DNNs). We

define a DNN as a neural network with at least two hidden layers and a large number of hidden

neurons. We refer to Emmert-Streib et al. (2020) for a comprehensive review of DNNs. Despite the

universal approximation properties of DNNs, we must also take care to ensure that our estimated

quantile functions do not cross each other. Therefore, we have to consider a wide enough monotonic

function class Gm to cover the true QY |X(·). We formally introduce this class Gm in Section 3.

Let G denote the constructed DNN, which is defined as a feature map function {G ∈ Gm :

Rp+1 7→ R1} that takes (Xi, τ) as input and generates the conditional quantile for Yi given Xi at

level τ as output. We refer to this generative framework as Generative Quantile Regression (GQR).

5



The optimization problem for GQR is

Ĝ = argmin
G∈Gm

1

n

n∑
i=1

Eτ

{
ρτ
(
Yi −G(Xi, τ)

)}
, (3)

where Ĝ denotes the estimated quantile function with optimized parameters (i.e. the weights and

biases) of the DNN. Note that optimizing the integrative loss Eτ{·} over τ in (3) is justified by

Proposition 2.1 introduced in the next section (i.e. we set λ = 0 in Proposition 2.1).

In order to solve (3), we can use stochastic gradient descent (SGD) with mini-batching (Emmert-

Streib et al., 2020). For each mini-batch evaluation, Xi is paired with a quantile level τ sampled

from Uniform(0, 1). Consequently, if there are M mini-batches, the expectation in (3) can be ap-

proximated by a Monte Carlo average of the random τ ’s, i.e. we approximate Eτ

{
ρτ
(
Yi−G(Xi, τ)

)}
with M−1

∑M
k=1

{
ρτk

(
Yi − G(Xi, τk)

)}
. Once we have solved (3), it is straightforward to use Ĝ

to generate new samples Ĝ(X, ξk), k = 1, 2, . . . , b, at various quantile levels ξ = {ξ1, ξ2, . . . , ξb},

where the ξ’s are random Uniform(0, 1) noise inputs. Provided that b is large enough, the generated

samples at ξ ∈ (0, 1)b can be used to reconstruct the full conditional density p(Y | X).

As discussed in Section 1, there are several other deep generative models (Zhou et al., 2023; Liu

et al., 2021) for generating samples from p(Y | X). These generative approaches also take random

noise z as an input (typically z ∼ N (0, 1)) to reflect variability, but there is no statistical meaning

for z. In contrast, the random noise τ in GQR (3) has a clear interpretation as a quantile level

τ ∈ (0, 1). Although GQR and these other deep generative approaches are promising approaches

for conditional sampling, these methods are all unfortunately prone to memorization of the training

data. When this occurs, the random noise does not generate any variability. To remedy this, we

now introduce our variability penalty in conjunction with our GQR loss function (3).

2.2 Variability Penalty for GQR

Overparameterization in neural networks occurs when the number of learnable parameters (i.e.

the weights and biases) is much greater than the number of training samples. In practice, it is

common for a DNN to be overparameterized. Empirical and theoretical studies have shown that

overparameterization improves the generalization and robustness of DNNs, since it greatly enhances

the representation power of the DNN and simplifies the optimization landscape (Allen-Zhu et al.,
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2019; Zhang et al., 2021; Soltanolkotabi et al., 2019; Montanari and Zhong, 2022). Unfortunately,

when a DNN is overparameterized to capture the underlying structure in the training data, the

random noise in GQR is likely to reflect no variability, no matter what value it inputs. This is a

common problem in deep generative models (Arpit et al., 2017; Arora et al., 2017; van den Burg

and Williams, 2021). We refer this phenomenon as vanishing variability. To be more specific,

let G(·, z) be the generator function constructed by a DNN, where z is a random noise variable

following some reference distribution such as a standard Gaussian or a standard uniform. The

vanishing variability phenomenon occurs when

Ĝ(Xi, z) = Yi, i = 1, ..., n. (4)

In other words, there is no variability when inputting different random noise z, generating almost

surely a discrete point mass at the training data. Given a new feature vector Xnew, G(Xnew, z) can

also only generate one novel sample from the true data distribution because of vanishing variability.

Since GQR takes the training data X ∈ Rp as input and the target quantile estimate lies in

R1, the weights in the DNN associated with X ∈ Rp are very likely to overwhelm those associated

with the noise input τ . As a result, GQR is very prone to encountering vanishing variability, as

are other generative approaches with multidimensional features. From another point of view, we

can see that due to the nonnegativity of the check function, the GQR loss (3) achieves a minimum

value of zero when we have vanishing variability (4).

To remedy this problem, we propose a new regularization term that encourages the network

to have more variability when vanishing variability occurs. Given a set of features X ∈ Rp, the

proposed variability penalty is formulated as follows:

penλ,α(G(X, τ), G(X, τ ′)) = −λ log {∥G(X, τ)−G(X, τ ′)∥1 + 1/α} , (5)

where λ ≥ 0 is the hyperparameter controlling the degree of penalization, α > 0 is a fixed hyper-

parameter, and τ, τ ′ ∼ Uniform(0, 1). The addition of 1/α inside the logarithmic term of (5) is

mainly to ensure that the penalty function is always well-defined (i.e. the quantity inside of log{·}

of (5) cannot equal zero). Our sensitivity analysis in Section D of the Supplementary Material

shows that our method is not usually sensitive to the choice of α. We find that fixing α = 1 or
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α = 5 works well in practice.

With the addition of the variability penalty (5) to our GQR loss function (3), our penalized

GQR (PGQR) method solves the optimization,

Ĝ = argmin
G∈Gm

1

n

n∑
i=1

[
Eτ

{
ρτ
(
Yi −G(Xi, τ)

)}
+ Eτ,τ ′

{
penλ,α (G(Xi, τ), G(Xi, τ

′))
}]

, (6)

where Gm denotes the PMNN family introduced in Section 3, and τ and τ ′ independently follow

a uniform distribution on (0, 1). The expectation Eτ,τ ′ is again approximated by a Monte Carlo

average. Note that when λ = 0, the PGQR loss (6) reduces to the (non-penalized) GQR loss (3).

The next proposition states that an estimated generator function Ĝ(X, τ) under the PGQR

objective (6) is equivalent to a neural network estimator ĝτ (X) based on the individual (non-

integrative) quantile loss function, provided that the family Gm in (6) is large enough.

Proposition 2.1 (equivalence of ĝτ (X) and Ĝ(X, τ)). For fixed λ ≥ 0 and α > 0, let ĝτ (X) =

argming∈H
∑n

i=1

[
ρτ (Yi − g(Xi)) + Eτ,τ ′{penλ,α(g(Xi, τ), g(Xi, τ

′))}
]
, for a class of neural networks

H, and τ, τ ′
iid∼ Uniform(0, 1). Consider a class of generator functions G, where {G ∈ G :

Rp × R × R 7→ R}. Assume that for all X ∈ X ⊂ Rp and quantile levels τ ∈ (0, 1), there

exists G ∈ G such that the target neural network ĝτ (X) can be represented by a hyper-network

G(X, τ). Then, for i = 1, . . . , n,

ĝτ (Xi) = Ĝ(Xi, τ) a.s.,

with respect to the probability law related to Eτ , where Ĝ is a solution to (6).

Proposition 2.1 justifies optimizing the integrative quantile loss over τ in the PGQR objective

(6). The next proposition justifies adding the variability penalty (5) to the GQR loss (3) by showing

that there exists λ > 0 so that memorization of the training data does not occur under PGQR.

Proposition 2.2 (PGQR does not memorize the training data). Suppose that α > 0 is fixed in

the variability penalty (5). Denote any minimizer of the PGQR objective function (6) by Ĝ. Then,

there exists λ > 0 such that

Ĝ(Xi, τ) ̸= Yi for at least one i = 1, . . . , n.
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Figure 1: A plot of the penalty function penλ,α(V ) = −λ log(|V |+ 1/α).

We now provide some intuition into the variability penalty (5). We can quantify the amount of

variability in the network by V := G(X, τ)−G(X, τ ′). Clearly, V = 0 when vanishing variability

(4) occurs. To avoid data memorization, we should thus penalize V more heavily when V ≈ 0, with

the maximum amount of penalization being applied when V = 0. Figure 1 plots the variability

penalty, penλ,α(V ) = −λ log(|V |+1/α), for several pairs of (α, λ). Figure 1 shows that penλ,α(V ) is

sharply peaked at zero and strictly convex decreasing in |V |. Thus, maximum penalization occurs

when V = 0, and there is less penalization for larger |V |. As λ increases, penλ,α(V ) also increases

for all values of V ∈ (−∞,∞), indicating that larger values of λ lead to more penalization.

Our penalty function takes a specific form (5). However, any other penalty on G(X, τ) −

G(X, τ ′) for X ∈ X that has a similar shape as the PGQR penalty (i.e. sharply peaked around

zero, as in Figure 1) would also conceivably encourage the network to have greater variability.

Another way to control the variability is to directly penalize the empirical variance s2 = (n −

1)−1
∑n

i=1[G(Xi, τ) − Ḡ]2, where Ḡ = n−1
∑n

i=1 G(Xi, τ), or the empirical standard deviation

s =
√
s2. However, penalties on s2 or s do not have an additive form and individual penalty terms

depend on each other, and therefore, these are not conducive to SGD-based optimization.

We now pause to highlight the novelty of our constructed variability penalty. In many other

nonparametric models, e.g. those based on nonparametric smoothing, a roughness penalty is often

added to an empirical loss function in order to control the smoothness of the function or density

estimate (Green and Silverman, 1994). These roughness penalties encourage greater smoothness
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Figure 2: Plots of the estimated conditional densities p(Y | Xtest) for three different test observations
under non-penalized GQR and PGQR with two different choices of λ ∈ {0.01, 2.5}. λ⋆ = 0.01 is the
optimal λ chosen by our tuning parameter selection method in Section 4.2.

of the target function in the spirit of reducing variance in the bias-variance trade-off. In contrast,

our variability penalty (5) directly penalizes generators with too small variance. By adding the

penalty to the GQR loss (3), we are encouraging the estimated network to have more variability.

To illustrate how PGQR prevents vanishing variability, we carry out a simple simulation study

under the model, Yi = X⊤
i β + ϵi, i = 1, . . . , n, where Xi

iid∼ N (0, I20), ϵi
iid∼ N (0, 1), and the

coefficients in β are equispaced over [−2, 2]. We used 2000 samples to train GQR (3) and PGQR (6),

and an additional 200 validation samples were used for tuning parameter selection of λ (described

in Section 4.2). To train the generative network, we fixed α = 1 and tuned λ from a set of

100 equispaced values between 0 and 2.5. We then generated 1000 samples {Ĝ(Xtest, ξk, λ)}1000k=1 ,

ξk
iid∼ Uniform(0, 1), from the estimated conditional density of p(Y | Xtest) for three different choices

of out-of-sample test data for Xtest. In our simulation, the tuning parameter selection procedure

introduced in Section 4.2 chose an optimal λ of λ⋆ = 0.01.

As shown in Figure 2, the non-penalized GQR model introduced in Section 2.1 (dashed orange

line) suffers from vanishing variability. In particular, GQR is constructed by a neural network of

three hidden layers, each layer having 1000 hidden neurons. Namely, GQR generates values near

the true test sample Ytest almost surely, despite the fact that we used 1000 different inputs for ξ to

generate the Ĝ samples. In contrast, the PGQR model with optimal λ⋆ = 0.01 (solid blue line with

filled circles) approximates the true conditional density (solid black line) very closely, capturing

the Gaussian shape and matching the true underlying variance.

On the other hand, Figure 2 also illustrates that if λ is chosen to be too large in PGQR (6),

10



then the subsequent approximated conditional density will exhibit larger variance than it should.

In particular, when λ = 2.5, Figure 2 shows that PGQR (dashed green line with hollow triangles)

overestimates the true conditional variance for Y given X. This demonstrates that the choice of

λ in the variability penalty (1) plays a very crucial role in the practical performance of PGQR. In

Section 4.2, we describe how to select an “optimal” λ so that PGQR neither underestimates nor

overestimates the true conditional variance. Our method for tuning λ also requires only a single

optimization, making it an attractive and scalable alternative to cross-validation.

As discussed earlier, the quantile loss function (3) is equal to zero when the estimated quantiles

are exactly equal to the observed responses Y ’s. Therefore, if a complex model like a DNN is

used for G(X, τ) in (3), the estimated model is more prone to interpolate the observed responses.

It is natural to wonder whether picking a simpler neural network (i.e. one with fewer hidden

layers and/or neurons) will remedy the vanishing variability phenomenon. In Section D of the

Supplement, we show that tuning the model complexity for non-penalized GQR (e.g. choosing a

simpler neural network with one or two hidden layers and five or 50 neurons) does not completely

avoid vanishing variability. A simpler neural network structure also invariably loses representation

power. Our PGQR model (6) allows us to realize the benefits of overparameterization (Allen-Zhu

et al., 2019; Zhang et al., 2021; Soltanolkotabi et al., 2019; Montanari and Zhong, 2022) while

simultaneously avoiding vanishing variability.

3 Partial Monotonic Neural Network

Without any constraints on the network, PGQR is just as prone as other unconstrained nonpara-

metric quantile regression models to suffer from crossing quantiles. For a fixed data point Xi and

an estimated network Ĝ, the crossing problem occurs when

Ĝ(Xi, τ1) > Ĝ(Xi, τ2) when 0 < τ1 < τ2 < 1. (7)

In the neural network literature, one popular way to address the crossing problem is to add a

penalty term to the loss such as max(0,−∂G(Xi; τ)/∂τ) (Tagasovska and Lopez-Paz, 2018; Liu

et al., 2020; Shen et al., 2022). Through regularization, the network is encouraged to have larger
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partial derivatives with respect to τ . Another natural way to construct a monotonic neural network

(MNN) is by restricting the weights of network to be nonnegative through a transformation or

through weight clipping (Zhang and Zhang, 1999; Daniels and Velikova, 2010; Mikulincer and

Reichman, 2022). Because all the weights are constrained to be nonnegative, this class of MNNs

might require longer optimization (i.e. more epochs in SGD) and/or a large amount of hidden

neurons to ensure the network’s final expressiveness.

Instead of constraining all the weights in the neural network, we make a simple modification to

the MNN architecture which we call the partial monotonic neural network (PMNN). The PMNN

family consists of two feedforward neural networks (FNN) as sub-networks which divide the input

into two segments. The first sub-network is a weight-constrained quantile network R1 7→ Rh where

the only input is the quantile level τ and h denotes the number of hidden neurons. The FNN

structure for one hidden layer in this sub-network is g(τ) = σ(Uposτ +b), where Upos is the weights

matrix of nonnegative weights, b is the bias matrix, and σ is the activation function, such as the

rectified linear unit (ReLU) function σ(x) = max{0, x}. The K1-layer constrained sub-network gc

can then be constructed as gc(τ) = gK ◦ · · · ◦ g1.

The second sub-network is a K2-layer unconstrained network guc : Rp 7→ Rh, taking the data X

as inputs. The structure of one hidden layer in this sub-network is g′(X) = σ(UX+b), where U is

an unconstrained weights matrix. We construct guc as guc(X) = g′K2
◦· · ·◦g′1. Finally, we construct

a single weight-constrained connection layer f : Rh 7→ R1 that connects the two sub-networks to

quantile estimators,

G(X, τ) = f ◦ (gc + guc). (8)

With our PMNN architecture, the monotonicity of G(·, τ) with respect to τ is guaranteed by the

positive weights in the quantile sub-network gc and the final layer f . At the same time, since the

data sub-network guc is unconstrained in its weights, guc can learn the features of the training data

well. In particular, the PMNN family is more flexible in its ability to learn features of the data and

is easier to optimize than MNN because of this unconstrained sub-network. We use our proposed

PMNN architecture as the family Gm over which to optimize the PGQR objective for all of the

simulation studies and real data analyses in this manuscript.

To investigate the performance of our proposed PMNN family of neural networks, we fit the
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Figure 3: Estimated quantile curves at levels τ ∈ {0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9} for the motorcycle
and BMD datasets. The left two panels plot the estimated curves for unconstrained nonparametric quantile
regression, and the right two panels plot the estimated curves for PGQR with the PMNN family.

PGQR model with PMNN as the function class Gm on two benchmark datasets. The first dataset

is the motorcycles data (Silverman, 1985) where the response variable is head acceleration (in g)

and the predictor is time from crash impact (in ms). The second application is a bone mineral

density (BMD) dataset (Takeuchi et al., 2006) where the response is the standardized relative

change in spinal BMD in adolescents and the predictor is the standardized age of the adoles-

cents. For these two datasets, we estimated the quantile functions at different quantile levels

τ ∈ {0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9} over the domain of the predictor. We compared PGQR

under PMNN to the unconstrained nonparametric quantile regression approach implemented in

the R package quantreg. The left two panels of Figure 3 demonstrate that the estimated quantile

curves under unconstrained nonparametric quantile regression are quite problematic for both the

motorcycle and BMD datasets; the quantile curves cross each other at multiple points in the pre-

13



dictor domain. In comparison, the right two panels of Figure 3 show that PGQR with the PMNN

family ensures no crossing quantiles for either dataset.

4 Scalable Computation for PGQR

4.1 Single-Model Training for PGQR

As illustrated in Section 2.2, PGQR’s performance depends greatly on the regularization parameter

λ ≥ 0 in the variability penalty (5). If λ is too small or if λ = 0, then we may underestimate the

true conditional variance of p(Y | X) and/or encounter vanishing variability. On the other hand,

if λ is too large, then we may overestimate the conditional variance. Due to the large number of

parameters in a DNN, tuning λ would be quite burdensome if we had to repeatedly evaluate the

deep generative network G(·, τ) for multiple choices of λ and training sets. In particular, using

cross-validation to tune λ is infeasible for DNNs, especially if the size of the training set is large.

Inspired by the idea of Generative Multiple-purpose Sampler (GMS) (Shin et al., 2022), we

instead propose to include λ as an additional input in the generator, along with data X and

quantile τ . In other words, we impose a discrete uniform distribution p(λ) for λ whose support

Λ is a grid of candidate values for λ. We then estimate the network G(·, τ, λ) with the modified

PGQR loss function,

Ĝ = argmin
G∈Gm

1

n

n∑
i=1

Eτ,λ

[
ρτ
(
Yi −G(Xi, τ, λ)

)
+ Eτ,τ ′

{
penλ,α (G(Xi, τ, λ), G(Xi, τ

′, λ))
} ]

. (9)

Note that (9) differs from the earlier formulation (6) in that λ ∈ Λ is not fixed in advance. In the

PMNN family Gm, λ is included in the unconstrained sub-network guc : Rp+1 7→ Rh.

The next corollary to Proposition 2.1 justifies including λ in the generator and optimizing the

integrative loss over {τ, λ} in the modified PGQR objective (9). The proof of Corollary 4.1 is a

straightforward extension of the proof of Proposition 2.1 and is therefore omitted.

Corollary 4.1. Let ĝτ,λ(X) = argming∈H
∑n

i=1

[
ρτ (Yi − g(Xi)) + Eτ,τ ′{penλ,α (g(Xi, τ), g(Xi, τ

′))}
]
,

for a class of neural networks H, where α > 0 is fixed and τ, τ ′
iid∼ Uniform(0, 1). Consider a class

of generator functions G where {G ∈ G : Rp × R × R 7→ R}. Suppose that for all X ∈ X ⊂ Rp,
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quantile levels τ ∈ (0, 1), and tuning parameters λ ∈ Λ, there exists G ∈ G such that the target

neural networks ĝτ,λ(X) can be represented by some G(X, τ, λ). Then, for i = 1, . . . , n,

ĝτ,λ(Xi) = Ĝ(Xi, τ, λ) a.s.,

with respect to the probability law related to Eτ,λ, where Ĝ is a solution to (9).

We note that Shin et al. (2022) proposed to use GMS for inference in linear quantile regression.

In contrast, PGQR is a method for nonparametric joint quantile estimation and conditional density

estimation (CDE). Linear quantile regression cannot be used for CDE; as a linear model, GMS

linear quantile regression also does not suffer from vanishing variability. This is not the case for

GQR, which motivates us to introduce the variability penalty in Section 2.2. Finally, we employ

the GMS idea for tuning parameter selection in PGQR, rather than for constructing pointwise

confidence bands (as in Shin et al. (2022)).

By including λ ∼ p(λ) in the generator, PGQR only needs to perform one single optimization

in order to estimate the network G. We can then use the estimated network Ĝ to tune λ, as we

detail in the next section. This single-model training stands in contrast to traditional smoothing

methods for nonparametric quantile regression, which typically require repeated model evaluations

via (generalized) cross-validation to tune hyperparameters such as bandwidth or roughness penalty.

4.2 Selecting An Optimal Regularization Parameter

We now introduce our method for selecting the regularization parameter λ in our variability penalty

(5). Considering the candidate set Λ, the basic idea is to select the best λ⋆ ∈ Λ that minimizes

the distance between the generated conditional distribution and the true conditional distribution.

Denote the trained network under the modified PGQR objective (9) as Ĝ(·, τ, λ), and let (Xval, Yval)

denote a validation sample. After optimizing (9), it is effortless to generate the conditional quantile

functions for each Xval in the validation set, each λ ∈ Λ, and any quantile level ξ ∈ (0, 1). In order

to select the optimal λ⋆ ∈ Λ, we first introduce the following proposition.

Proposition 4.2. Suppose that two univariate random variables Q and W are independent. Then,

Q and W have the same distribution if and only if P (Q < W | W ) follows a standard uniform

distribution.
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Figure 4: Histogram of the estimated P̂
(i)
τ,λ⋆ ’s in the validation set for the optimal λ⋆.

Based on Proposition 4.2, we know that, given a validation sample (Xval, Yval), the best

λ⋆ ∈ Λ should satisfy Pτ,λ(Ĝ(Xval, τ, λ
⋆) < Yval

∣∣ Yval) ∼ Uniform(0, 1). In practice, if we have

M random quantile levels τ = (τ1, . . . , τM) ∈ (0, 1)M , we can estimate the probability Pτ,λ :=

Pτ,λ(Ĝ(Xval, τ, λ
⋆) < Yval

∣∣ Yval) with a Monte Carlo approximation,

P̂
(i)
τ,λ = M−1

M∑
k=1

I{Ĝ(X
(i)
val, τk, λ) < Y

(i)
val } ≈ Pτ,λ(Ĝ(Xval, τ, λ

⋆) < Yval

∣∣ Yval), (10)

for each ith validation sample (X
(i)
val, Y

(i)
val ). With nval validation samples, we proceed to estimate

P̂
(i)
τ,λ for all nval validation samples (X

(i)
val, Y

(i)
val )’s and each λ ∈ Λ. We then compare the empirical

distribution of the P̂
(i)
τ,λ’s to a standard uniform distribution for each λ ∈ Λ and select the λ⋆ that

minimizes the distance between P̂τ,λ and Uniform(0, 1). That is, given a valid distance measure d,

we select the λ⋆ which satisfies

λ⋆ = argmin
λ∈Λ

d(P̂τ,λ,Uniform(0, 1)). (11)

There are many possible choices for d in (11). In this paper, we use the Cramer-von Mises (CvM)

criterion due to the simplicity of its computation and its good empirical performance. The CvM
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criterion is straightforward to compute as

d(P̂τ,λ,Uniform(0, 1)) =

nval∑
i=1

(i/nval − P̂
(i)
τ,λ − 2/nval)

2/nval. (12)

After selecting λ∗ according to (11), we can easily generate samples from the conditional quantiles

of p(Y | X) for any feature data vector X. We simply generate Ĝ(X, ξk, λ
⋆), where k = 1, . . . , b,

for random quantiles ξ1, . . . , ξb
iid∼ Uniform(0, 1). For sufficiently large b, the conditional density

p(Y | X) can be inferred from {Ĝ(X, ξk, λ
⋆)}bk=1. The complete algorithm for scalable computation

of PGQR is given in Algorithm 1.

We now illustrate our proposed selection method for λ ∈ Λ in the simulated linear regression

example from Section 2.2. Figure 4 plots the histogram of the estimated P̂
(i)
τ,λ⋆ ’s in the validation

set for the λ⋆ which minimizes the CvM criterion. We see that the empirical distribution of the

P̂
(i)
τ,λ⋆ ’s closely follows a standard uniform distribution.

Figure 5 illustrates how the PGQR solution changes as log(λ) increases for every λ ∈ Λ.

Figure 5 plots the conditional standard deviation (left panel), the CvM criterion (middle panel),

and the coverage rate of the 95% confidence intervals (right panel) for the PGQR samples in

the validation set. The vertical dashed red line denotes the optimal λ⋆ = 0.01. We see that

the λ⋆ which minimizes the CvM (middle panel) captures the true conditional standard deviation

of σ = 1 (left panel) and attains coverage probability close to the nominal rate (right panel).

This example demonstrates that our proposed selection method provides a practical alternative to

computationally burdensome cross-validation for tuning λ in the variability penalty (5). In Section

B of the Supplementary Material, we further demonstrate that our tuning parameter selection

method is suitable to use even when the true conditional variance is very small (true σ2 = 0.01).

In this scenario, our procedure selects a very small λ⋆ ≈ 0, so that PGQR does not overestimate

the conditional variance.

5 Numerical Experiments and Real Data Analysis

We evaluated the performance of PGQR on several simulated and real datasets. We fixed α = 1

or α = 5 in the variability penalty (5). We optimized the modified PGQR loss (9) over the
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Figure 5: The conditional standard deviation (left panel), CvM statistic (middle panel), and coverage
rate (right panel) in the validation set vs. log(λ) for each λ ∈ Λ. The red dashed line corresponds to the
λ⋆ which minimizes the CvM criterion.

PMNN family (Section 3), where each sub-network had three hidden layers with 1000 neurons per

layer and ReLU (Nair and Hinton, 2010) was used as the activation function. The support for Λ

was chosen to be 100 equispaced values between 0 and exp(1). PyTorch was used to implement

PGQR. To ensure numerical stability, Algorithm 1 was initialized with random weights close to

but not exactly zero. We estimated Ĝ in (9) using the Adam optimizer (Kingma and Ba, 2014),

which has been empirically shown to be robust and helps to mitigate gradient explosion. Gradient

clipping (Pascanu et al., 2013) could also be employed to prevent exploding gradients; however, we

found that gradient clipping was not needed for PGQR. Throughout our simulations and real data

applications, we did not experience any numerical overflow, underflow, or exploding gradients.

We compared PGQR to several other state-of-the-art methods:

� GCDS (Zhou et al., 2023). Following Zhou et al. (2023), we trained both a generator and a

discriminator using FNNs with one hidden layer of 25 neurons. Despite this simple architecture,

we found that GCDS might still encounter vanishing variability. For fair comparison to PGQR,

we also increased the number of hidden layers to three and the number of nodes per layer to

1000. We refer to this modification as deep-GCDS.

� WGCS (Liu et al., 2021). We adopted the gradient penalty recommended by Liu et al. (2021)

and set the hyperparameter associated with the gradient penalty as 0.1.

� FlexCoDE (Izbicki and Lee, 2017). We considered three ways of estimating the basis func-

tions βj(X): nearest-neighbor regression (NNR), sparse additive model (SAM), and XGBoost
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Algorithm 1 Scalable Implementation of PGQR

1: Split non-test data into non-overlapping training set (Xtrain,Ytrain) and validation set (Xval,Yval)
2: Initialize G parameters ϕ, learning rate γ, width h of DNN hidden layers, and total epoches T
3: procedure: Optimizing G
4: for epoch t in 1, . . . , T do
5: Sample τ, τ ′ ∼ Uniform(0, 1) and λ ∈ Λ
6: Evaluate loss (9) with (Xtrain,Ytrain)
7: Update G parameters ϕ via SGD
8: end for
9: return Ĝ
10: end procedure
11: procedure: Tuning λ

12: Set M = 1000 and sample τ1, . . . , τM
iid∼ Uniform(0, 1)

13: Generate {Ĝ(X
(i)
val, τ1, λl), . . . , Ĝ(X

(i)
val, τM , λl)} for each λl ∈ Λ and each X

(i)
val, i = 1, . . . , nval

14: Compute P̂
(i)
τ,λl

as in (10) on (X
(i)
val, Y

(i)
val ) for each i = 1, . . . , nval and each λl ∈ Λ

15: Select λ∗ according to (11) with CvM criterion (12) as d
16: return λ∗

17: end procedure
18: procedure: Estimating p(Y | Xtest) for test data Xtest

19: Set b = 1000 and sample ξ1, . . . , ξb
iid∼ Uniform(0, 1)

20: Estimate ξk-th quantile of Y | Xtest as Ĝ(Xtest, ξk, λ
∗) for k = 1, . . . , b

21: return {Ĝ(Xtest, ξ1, λ
∗), . . . , Ĝ(Xtest, ξb, λ

∗)}
22: end procedure

(FlexZboost).

� Random Forest CDE, or RFCDE (Pospisil and Lee, 2019).

For FlexCoDE and RFCDE, we adopted the default hyperparameter settings of Izbicki and Lee

(2017) and Pospisil and Lee (2019) respectively.

5.1 Simulation Studies

For our simulation studies, we generated data from Yi = g(Xi) + ϵi, i = 1, . . . , 2000, for some

function g, where Xi
iid∼ N (0, Ip) and the residual errors ϵi’s were independent. The specific

simulation settings are described below.

1. Simulation 1: Multimodal and heteroscedastic. Yi = βiXi + ϵi, where βi = {−1, 0, 1}

with equal probability and ϵi = (0.25 · |Xi|)1/2.

2. Simulation 2: Mixture of left-skewed and right-skewed. Yi = X⊤
i β + ϵi, where β ∈ R5

is equispaced between [−2, 2], and ϵi = χ2(1, 1)I(X1 >= 0.5) + log[χ2(1, 1)]I(X1 < 0.5). Here,

the skewness is controlled by the covariate X1.
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Figure 6: Plots of the estimated conditional densities p(Y | Xtest) for three different test observations
from one replication of Simulation 3. Plotted are the estimated conditional densities for PGQR (α = 1),
GCDS, WGCS, and deep-GCDS.

3. Simulation 3: Mixture of unimodal and bimodal. Yi = X⊤
i βi + ϵi, where βi ∈ R5 with

βi1 ∈ {−2, 2} with equal probability, (βi2, βi3, βi4, βi5)
⊤ are equispaced between [−2, 2], and

ϵi
iid∼ N (0, 1). Here, p(Y | X) is unimodal when X1 ≈ 0, and otherwise, it is bimodal.

In our simulations, 80% of the data was used to train the model, 10% was used as the validation

set for tuning parameter selection, and the remaining 10% was used as test data to evaluate model

performance. In Section B of the Supplementary Material, we present additional simulation results

for the following scenarios: g(Xi) is a nonlinear function of Xi (Simulation 4), the error variance

is very small (Simulation 5), and the error variance is dependent on ∥X∥1 (Simulation 6).

Figure 6 compares the estimated conditional density of p(Y | Xtest) for three test observations

from one replication of Simulation 3. We see that PGQR (solid blue line with filled circles) is

able to capture both the unimodality and the bimodality of the ground truth conditional densities

(solid black line). Meanwhile, GCDS (dashed red line with hollow triangles), WGCS (dashed

green line with crosses), and deep-GCDS (dashed purple line with pluses) struggled to capture

the true conditional densities for at least some test points. In particular, Figure 6 shows some

evidence of variance underestimation for WGCS and deep-GCDS, whereas this is counteracted by

the variability penalty in PGQR. Additional figures from our simulation studies are provided in

Section B of the Supplement.

We repeated our simulations for 20 replications. For each experiment, we computed the pre-

dicted mean squared error (PMSE) for different summaries of the conditional densities for the test
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Simulation 1 Simulation 2 Simulation 3
Method E(Y | X) sd(Y | X) Cov (Width) E(Y | X) sd(Y | X) Cov (Width) E(Y | X) sd(Y | X) Cov (Width)

PGQR (α=1) 0.41 0.34 0.95 (23.48) 0.38 0.11 0.93 (8.14) 0.30 0.08 0.92 (6.61)

PGQR (α=5) 0.36 0.31 0.95 (23.41) 0.31 0.07 0.95 (8.83) 0.25 0.06 0.96 (6.60)

GCDS 10.49 25.82 0.68 (15.48) 0.53 0.27 0.92 (8.55) 0.33 0.12 0.84 (5.78)

WGCS 229.91 73.68 0.15 (4.88) 6.57 1.45 0.80 (9.17) 6.25 1.98 0.71 (8.08)

deep-GCDS 7.99 56.87 0.38 (7.42) 5.41 2.89 0.42 (2.12) 6.11 2.78 0.28 (2.04)

FlexCoDE-NNR 0.97 0.54 0.96 (23.94) 0.83 0.36 0.91 (9.03) 1.12 0.75 0.92 (9.11)

FlexCoDE-SAM 0.37 0.62 0.97 (25.07) 0.73 1.03 0.93 (11.15) 1.01 1.99 0.93 (10.91)

FlexZBoost 0.77 63.81 1.00 (46.11) 1.29 0.36 0.91 (8.28) 1.77 0.74 0.85 (7.88)

RFCDE 1.98 0.72 0.44 (25.46) 0.61 0.34 0.56 (6.26) 0.83 0.65 0.96 (23.06)

Table 1: Table reporting the PMSE for the conditional expectation and standard deviation, as well as
the coverage rate (Cov) and average width of the 95% prediction intervals, for Simulations 1 through 3.
Results were averaged across 20 replicates.

data. We define the PMSE as

PMSE =
1

ntest

ntest∑
i=1

(m̂(Xtest,i)−m(Xtest,i))
2 , (13)

where m(X) generically refers to the conditional mean of Y given X, i.e. E(Y | X), or the

conditional standard deviation, i.e. sd(Y | X). For the generative models (PGQR, GCDS, WGCS,

and deep-GCDS), we approximated m̂ in (13) by Monte Carlo simulation using 1000 generated

samples, while for FlexCoDE and RFCDE, we approximated m̂ using numerical integration. In

addition to PMSE, we also used the 2.5th and 97.5th percentiles of the predicted conditional

densities to construct 95% prediction intervals for the test data. We then calculated the coverage

probability (Cov) and the average width for these prediction intervals.

Table 1 summarizes the results for PGQR with α ∈ {1, 5} in (5) and all competing methods,

averaged across 20 experiments. There was not much substantial difference between α = 1 and

α = 5 for PGQR. Table 1 shows that PGQR had the lowest PMSE in all three simulations

and attained coverage close to the nominal rate. In Simulations 2 and 3, the prediction intervals

produced by PGQR had the highest coverage rate. In Simulation 1, FlexZBoost had 100% coverage,

but the average width of the prediction intervals for FlexZBoost was considerably larger than that of

the other methods, suggesting that the intervals produced by FlexZBoost may be too conservative

to be informative.

Since PGQR approximates conditional quantile functions, we also compared PGQR with two

other neural network approaches for nonparametric joint quantile regression. Specifically, we com-
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Figure 7: Barplots of the average total variation distance (TV) and Hellinger distance (HD) across 20
replicates evaluated at τ ∈ {0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9} for Simulations 1 through 3.

pared PGQR to the MCQRNN method of Cannon (2018) and the NMQN method of Moon et al.

(2021) with ℓ1-penalization. These methods are available in the R packages qrnn and l1pm respec-

tively.

To compare PGQR to NMQN and MCQRNN, we considered the quantile accuracy criterion

used by Moon et al. (2021). GivenK prespecified quantile levels, let Qτk(·) be the conditional quan-

tile function for k = 1, . . . , K, and let Q̂τk denote the associated estimated quantile function. Given

X, we obtained the quantile accuracy, r̂k(X; Q̂τk) = B−1
∑B

b=1 I(Y ∗
b ≤ Q̂τk(X)), where Y ∗

1:B were

sampled from P (Y | X) with B = 2000 and K = 9 (τk ∈ {0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9}).

The relative frequency p̂k(X, Q̂τk) between τk−1 and τk was then calculated as r̂k(X; Q̂τk) −

r̂k(X; Q̂τk−1
). If Q̂τk is identical to true conditional quantile function, then p̂k(X, Q̂τk)

p→ 1/(K +

1) as B → ∞. Based on this fact, we used total variation distance (TV) and Hellinger distance

(HD) to measure the distance between {p̂k(X, Q̂τk)}k=1,...,K and {1/(K + 1), . . . , 1/(K + 1)}. A

more detailed description can be found in Moon et al. (2021).

In Figure 7, we plot the performance of PGQR, NMQN, and MCQRNN for Simulations 1

through 3. Additional simulation results are provided in Section B of the Supplement. Overall,

PGQR had comparable performance to NMQN, and both PGQR and NMQN performed better

than MCQRNN with lower average TV and HD. We reiterate that a major difference between

these methods is that PGQR uses a deep generative model to generate the conditional quantiles

from many random quantile levels τ ’s, whereas NMQN and MCQRNN require the practitioner to

specify K target quantile levels τk, k = 1, . . . , K, at which to estimate the conditional quantiles.
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PGQR GCDS deep-GCDS WGCS
Dataset n p Cov Width Cov Width Cov Width Cov Width

machine 557 4 0.96 2.82 0.91 1.92 0.87 1.52 0.69 1.66
fish 908 6 0.96 3.29 0.79 2.38 0.54 1.08 0.80 2.36
noise 1503 5 0.92 7.58 0.00 1.68 0.00 0.24 0.00 22.41

YVRprecip 10958 5 0.94 12.6 0.73 3.62 0.89 16.1 0.06 2.49

Table 2: Results from our real data analysis. Cov and width denote the coverage rate and average width
respectively of the 95% prediction intervals for the test observations.

5.2 Real Data Analysis

We examined the performance of PGQR on three real datasets from the UCI Machine Learning

Repository, which we denote as: machine, fish, and noise.1 We also applied PGQR to YVRprecip

dataset analyzed by Cannon (2018) and Moon et al. (2021). The machine dataset comes from a

real experiment that collected the excitation current (Y ) and four machine attributes (X) for a set

of synchronous motors (Kahraman, 2014). The fish dataset contains the concentration of aquatic

toxicity (Y ) that can cause death in fathead minnows and six molecular descriptors (X) described

in Cassotti et al. (2015). The noise dataset measures the scaled sound pressure in decibels (Y )

at different frequencies, angles of attacks, wind speed, chord length, and suction side displacement

thickness (X) for a set of airfoils (Lopez et al., 2008). Finally, the YVRprecip dataset collects daily

precipitation totals (mm) at Vancouver International Airport from 1971 to 2000. The five covariates

in YVRprecip are seasonal cycle, daily sea-level pressures, 700-hPa specific humidities, and 500-

hPa geopotential heights (Cannon, 2018; Moon et al., 2021). The noise and YVRprecip datasets

display extreme skewness in the responses, rendering them especially challenging for conditional

quantile and conditional density estimation.

We examined the out-of-sample performance for PGQR (with fixed α = 1), GCDS, deep-GCDS,

and WGCS. In particular, 80% of each dataset was randomly selected as training data, 10% was

used as validation data for tuning parameter selection, and the remaining 10% was used as test data

for model evaluation. To compare these deep generative methods, we considered the out-of-sample

coverage rate (Cov) and the average width of the 95% prediction intervals in the test data.

The results from our real data analysis are summarized in Table 2. On all four datasets, PGQR

achieved higher coverage that was closer to the nominal rate than the competing methods. It seems

1Accessed from https://archive.ics.uci.edu/ml/index.php.
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as though the other generative approaches may have been impacted by the vanishing variability

phenomenon, resulting in too narrow prediction intervals that did not cover as many test samples.

In particular, GCDS, deep-GCDS, and WGCS all performed very poorly on the noise dataset, with

an out-of-sample coverage rate of zero. On the other hand, with the help of the variability penalty

(5), PGQR did not underestimate the variance and demonstrated an overwhelming advantage over

these other methods in terms of predictive power. Moreover, the average widths of the PGQR

prediction intervals were not overwhelmingly large so as to be uninformative.

Additional illustrations and data analyses are provided in Section A of the Supplement. In

particular, the Supplement presents a clinically important application of PGQR for predicting

muscular strength in older adults.

6 Discussion

In this paper, we have made contributions to both the quantile regression and deep learning lit-

erature. Specifically, we proposed PGQR as a new deep generative approach to joint quantile

estimation and conditional density estimation. Different from existing conditional sampling meth-

ods (Zhou et al., 2023; Liu et al., 2021), PGQR employs a novel variability penalty to counteract

the vanishing variability phenomenon in deep generative networks. We introduced the PMNN

family of neural networks to enforce the monotonicity of quantile functions. Finally, we provided

a scalable implementation of PGQR which requires solving only a single optimization to select the

regularization term in the variability penalty. Through analyses of real and simulated datasets,

we demonstrated PGQR’s ability to capture critical aspects of the conditional distribution such as

multimodality, heteroscedasticity, and skewness.

We anticipate that our penalty on vanishing variability in generative networks is broadly ap-

plicable for a wide number of loss functions besides the check function. In the future, we will

extend the variability penalty to other deep generative models and other statistical problems be-

sides quantile regression. In addition, we plan to pursue variable selection, so that our method

can also identify the most relevant covariates when the number of features p is large. Owing to its

single-model training, PGQR is scalable for large n. However, further improvements are needed in

order for PGQR to avoid the curse of dimensionality for large p.
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