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Abstract

Section A provides additional illustrations and data applications of the proposed Penal-
ized Generative Quantile Regression (PGQR) method. Section B presents the results from
additional simulation studies and additional figures. Section C gives the proofs of all the
propositions from the main manuscript. Section D conducts additional analyses of model
complexity and sensitivity to the choice of hyperparameter α in the PGQR variability penalty
function.

A Additional Illustrations and Real Data Analyses

A.1 Illustration: Takeuchi’s Example

A popular illustrative example in the literature for nonparametric quantile estimation was given

by Takeuchi et al. (2006) (henceforth known as Takeuchi’s example), where

Yi = sin(πXi)/(πXi) + ϵi, i = 1, . . . , n,

*The authors gratefully acknowledge financial support from the National Science Foundation (Grant no. NSF
DMS-2015528). We would like to thank Dr. Jun Liu from Harvard University for helpful comments.
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Figure 1: Using PGQR to model the conditional densities p(Y | X = 0.5) and p(Y | X = −0.5). The
conditional quantile functions at levels {0.1, 0.3, 0.5, 0.7, 0.9} are also displayed.

with xi ∼ Uniform(−1, 1) and ϵi ∼ N (0, 0.1 exp(1−Xi)). By Takeuchi et al. (2006), the true τth

conditional function, τ ∈ (0, 1), is fτ (X) = sin(πX)/(πX) + 0.1 exp(1 − X)Φ−1(τ), where Φ−1(·)

denotes the inverse cumulative distribution function (cdf) of a standard Gaussian distribution.

Moreover, the conditional density of Y given X is Y | X ∼ N (sin(πX)/(πX), 0.1 exp(1−X)).

We made an artificial dataset of size n = 2000 for Takeuchi’s example and applied our pro-

posed PGQR method to it. Specifically, we aimed to estimate the conditional densities p(Y |

X = −0.5) and p(Y | X = 0.5). The left panel of Figure 1 depicts the conditional density es-

timates for PGQR, which are almost identical to the true conditional densities (right panel of

Figure 1). In addition, we estimated the conditional quantile function fτ (x) at quantile levels

τ = {0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9}. From Figure 1, we observe that the mid-range quan-

tile functions estimated by PGQR for τ ∈ {0.2, 0.3, . . . , 0.8} are very close to the true quantile

functions. For the low and high quantile levels at {0.1, 0.9}, the PGQR estimates show a similar

pattern to the true quantile functions, although there is some slight departure near X = −1 where

there is less data.

A.2 Clinical Application: Discovering Hidden Subpopulations

As discussed in the main manuscript, PGQR aims to simultaneously generate samples from multiple

conditional quantiles QY |X(τ) of p(Y | X) at different quantile levels τ ∈ (0, 1). An automatic

byproduct of joint nonparametric quantile regression (as opposed to linear quantile regression) is
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Figure 2: Using PGQR to model the conditional density of AP-L/F ratio given weight in older adults.
Left panel: Weight = 45.4 kg, Right panel: Weight = 77.5 kg.

that if the conditional quantiles QY |X(τ) are estimated well for a large number of quantiles, then

we can also infer the entire conditional distribution for Y given X.

To demonstrate the clinical utility of our method, we apply our proposed PGQR method to a

real dataset on body composition and strength in older adults (RoyChoudhury and Xu, 2020). The

data was collected over a period of 12 years for 1466 subjects as part of the Rancho Bernardo Study

(RBS), a longitudinal observational cohort study. We are interested in modeling the appendicular

lean/fat (AP-L/F) ratio, i.e.

AP-L/F Ratio =
Weight on legs and arms

Fat weight
,

as a function of weight (kg). Accurately predicting the AP-L/F ratio is of practical clinical interest,

since the AP-L/F ratio provides information about limb tissue quality and is used to diagnose

sarcopenia (age-related, involuntary loss of skeletal muscle mass and strength) in adults over the

age of 30 (Evans, 2010; Scafoglieri et al., 2017).

Figure 2 plots the approximated conditional density of AP-L/F ratio given weight of 45.4 kg (left

panel) and 77.5 kg (right panel) under the PGQR model. We see evidence of data heterogeneity

(actually, depending on an unobserved factor of gender), as the estimated conditional density is

unimodal when the weight of older adults is 45.4 kg but bimodal when the weight of older adults

is 77.5 kg. In short, our method discovers the presence of two heterogeneous subpopulations of
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Simulation 4 Simulation 5 Simulation 6
Method E(Y | X) sd(Y | X) Cov (Width) E(Y | X) sd(Y | X) Cov (Width) E(Y | X) sd(Y | X) Cov (Width)

PGQR (α = 1) 0.15 0.07 0.95 (4.33) 0.004 0.0001 0.93 (0.42) 7.20 57.75 0.79(17.72)

PGQR (α = 5) 0.14 0.08 0.96 (4.50) 0.005 0.03 0.99 (1.01) 7.20 56.74 0.79(18.80)

GCDS 0.23 0.05 0.87 (3.39) 0.002 0.0011 0.73 (0.27) 7.44 64.63 0.80(18.41)

deep-GCDS 0.43 0.20 0.76 (2.88) 0.004 0.0022 0.99 (0.56) 11.9 85.60 0.61(13.46)

WGCS 0.92 0.15 0.79 (4.41) 0.640 0.2372 0.70 (1.15) 9.58 93.52 0.51(11.54)

FlexCoDE-NNR 0.23 0.003 0.92 (3.82) 0.069 0.0168 0.89 (0.27) 1.57 35.46 0.37(8.38)

FlexCoDE-SAM 0.23 0.002 0.93 (3.83) 0.043 0.0130 0.93 (4.04) 1.76 50.72 0.09(5.56)

FlexZBoost 0.45 0.06 0.82 (3.50) 1.244 0.2824 0.81 (4.13) 19.1 40.36 0.58(15.5)

RFCDE 0.24 0.003 0.94 (3.97) 0.067 0.0292 0.92 (3.97) 3.12 67.33 0.28(6.61)

Table 1: Table reporting the PMSE for the conditional expectation and standard deviation, as well as
the coverage rate (Cov) and average width of the 95% prediction intervals, for Simulations 4 through 6.
Results were averaged across 20 replicates.

adults that weigh around 78 kg. In contrast, mean regression (e.g. simple linear regression or

nonparametric mean regression) of AP-L/F ratio given weight might obscure the presence of two

modes and miss the fact that weight affects AP-L/F ratio differently for these two clusters of adults.

B More Simulation Results

B.1 Additional Simulation Studies

In addition to the three simulations described in Section 5.1 of the main manuscript, we also

conducted simulation studies under the following scenarios:

� Simulation 4: Nonlinear function with an interaction term and one irrelevant

covariate. Yi = 0.5 log(10−X2
i1)+0.75 exp(Xi2X3/5)− 0.25|Xi4/2|+ ϵi, where ϵi ∼ N (0, 1).

Note that there is a (nonlinear) interaction between X2 and X3, while X5 is irrelevant.

� Simulation 5: Very small conditional variance. Yi = βXi+ϵi, i = 1, . . . , n, where β = 1

and ϵi
iid∼ N (0, 0.01).

� Simulation 6: Error term dependent on norm of predictor X. Yi = X⊤
i β+ϵi, where

β ∈ R5 is equispaced between [−2, 2], Xi ∼ Uniform[−1, 1]5 and ϵi ∼ N (0, exp(0.5∥Xi∥1)).

The results from these three simulations averaged across 20 replicates are shown in Table 1.

One may be concerned whether the regularized PGQR overestimates the conditional variance

when the true conditional density has a very small variance. To illustrate the flexibility of PGQR,
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Figure 3: Plots of the estimated PGQR (α = 1) conditional densities p(Y | Xtest) for three different
test observations from one replication of Simulation 5. The optimal λ⋆ is chosen by our tuning parameter
selection method in Section 4.2 of the main manuscript.

Figure 3 plots the estimated conditional densities for three test observations from one replication of

Simulation 5. Recall that in Simulation 5, the true conditional variance is very small (σ2 = 0.01).

With the optimal λ⋆ selected using the method introduced in Section 4.2 of the main manuscript,

Figure 3 shows that the estimated PGQR conditional density still manages to capture the Gaussian

shape while matching the true variance of 0.01. If the true conditional variance is very small (as

in Simulation 5), then PGQR selects a tiny λ⋆ ≈ 0. In this scenario, PGQR only applies a small

amount of variability penalization and thus does not overestimate the variance.

In Simulation 6, we investigated the especially challenging case when the error term ϵ is de-

pendent on ℓ1 norm of predictor X. This simulation setting is inspired by simulation M2 in Moon

et al. (2021) and is a variant of an example from Appendix A of Takeuchi et al. (2006). In Figure 4,

we see that the variance of true conditional distribution varies with ∥X∥1. We observe that PGQR

was able to capture of true conditional distribution in some cases where ∥X∥1 is not large (e.g.

∥X∥1 < 4). However, PGQR (α = 1) is incapable of estimating very large variance in the third

graph (upper panel) when ∥X∥1 = 6.4. In this case, the true conditional density is very flat and

thus difficult for all of the deep generative methods to estimate well. It is worth noting that the

other state-of-the art methods, GCDS and WGCS, struggled even more than PGQR in this heavy

heteroscedasticity scenario. Figure 8 also indicates that PGQR had better average performance

than NMQN and MCQRNN for multiple quantile estimation.
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Figure 4: Plots of the estimated PGQR (α = 1) conditional densities p(Y | Xtest) for six different test
observations from one replication of Simulation 6.

B.2 Additional Figures

Here, we provide additional figures from one replication each of Simulations 1, 2, and 4 (with

α = 1 in PGQR). Figures 5-7 illustrate that PGQR (blue solid line with filled circles) is better able

to estimate the true conditional densities (solid black line) than GCDS, WGCS, and deep-GCDS

(dashed lines). In particular, PGQR does a better job of capturing critical aspects of the true

conditional distributions such as multimodality, heteroscedasticity, and skewness.

� Simulation 1: Multimodal and heteroscedastic.

Figure 5: Plots of the estimated conditional densities p(Y | Xtest) for three different test observations
from one replication of Simulation 1.
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� Simulation 2: Mixture of left-skewed and right-skewed.

Figure 6: Plots of the estimated conditional densities p(Y | Xtest) for three different test observations
from one replication of Simulation 2.

� Simulation 4: Nonlinear function with an interaction term and one irrelevant co-

variate.

Figure 7: Plots of the estimated conditional densities p(Y | Xtest) for three different test observations
from one replication of Simulation 4.

Figure 8: Barplots of the average total variation distance (TV) and Hellinger distance (HD) across 20
replicates evaluated at τ ∈ {0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9} for Simulations 4 through 6.

7



Figure 8 depicts the quantile estimation performance of PGQR compared to NMQN and MC-

QRNN in Simulations 4 through 6. In Simulation 4, NMQN performed slightly better than PGQR,

but the performance of the two methods was very comparable. However, in Simulations 5 and 6,

PGQR outperformed NMQN, with lower average total variation distance (TV) and Hellinger dis-

tance (HD). Both PGQR and NMQN outperformed MCQRNN in Simulations 4 through 6.

C Proofs of Propositions

Proof of Proposition 2.1. Suppose that for some ϵ > 0, there exists a set C ⊂ (0, 1) with

Pτ (C) > ϵ such that for some i∗ ∈ {1, . . . , n}, ĝτ (Xi∗) ̸= Ĝ(Xi∗ , τ) for all τ ∈ C. Then we can

construct another optimal generator G̃ such that

1

n

n∑
i=1

Eτ

[
ρτ
(
yi − Ĝ(Xi, τ)

)]
+ Eτ̃ ,τ̃ ′

{
penλ,α

(
Ĝ(Xi, τ̃), Ĝ(Xi, τ̃

′)
)}

≥ 1

n

n∑
i=1

Eτ

[
ρτ
(
yi − G̃(Xi, τ)

)]
+ Eτ̃ ,τ̃ ′

{
penλ,α

(
G̃(Xi, τ̃), G̃(Xi, τ̃

′)
)}

,

where

G̃(Xi∗ , τ) =

Ĝ(Xi∗ , τ) for τ ̸∈ C,

ĝτ (Xi∗) for τ ∈ C.

This is a contradiction due to the fact that ĝτ is the minimizer of 1
n

∑n
i=1 ρτ (yi − Ĝ(Xi, τ)) +

Eτ̃ ,τ̃ ′{penλ,α(Ĝ(Xi, τ̃), Ĝ(Xi, τ̃
′))}.

Proof of Proposition 2.2. Suppose that for all λ ≥ 0, all τ ∈ (0, 1), and all i ∈ {1, . . . , n},

Ĝ(Xi, τ) = Yi.

Then the penalty part in the PGQR loss (6) attains Eτ,τ ′{penλ,α(Ĝ(Xi, τ), Ĝ(Xi, τ
′))} = λ log(α),

while the first term in (6) satisfies Eτ [ρτ
(
yi− Ĝ(Xi, τ)

)
] = 0. As a result, the total loss is λ log(α).

Since the case of Ĝ(Xi, τ) = Yi is included in cases of Varτ{Ĝ(Xi, τ)} = 0, we focus on the
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variance. When there exists some i ∈ {1, . . . , n} and some τ ∈ (0, 1) such that

Varτ

{
Ĝ(Xi, τ)

}
> 0,

the resulting total loss can be made less than λ log(α) by choosing an appropriate λ > 0. This

contradicts the fact that Ĝ is the minimizer as in (6).

Proof of Proposition 4.2. It is trivial that FQ(W ) := P (Q ≤ W | W ) ∼ Uniform(0, 1) when

Q
d
= W . Without loss of generality, we assume that FQ is invertible. If FQ is not invertible, then

we replace F−1
Q (W ) below with F−

Q (W ) := inf{x : FQ(x) ≥ W}, and the result still holds. We shall

show that FQ(W ) ∼ Uniform(0, 1) implies that the two distributions for Q and W are identical.

Suppose that FQ(W ) follows a standard uniform distribution. Then,

x = P (FQ(W ) < x) = P (W < F−1
Q (x)) = FQ(F

−1
Q (x)),

which implies that FW (F−1
W (x)) = x. Thus, it follows that the distributions of Q and W are

identical.

D Analyses of Model Complexity and Choice of α

D.1 Model Complexity Analysis

The estimated conditional quantile function Ĝ(X, τ) depends on estimation of two sub-networks

gc(τ) and guc(X). To avoid vanishing variability (4), we proposed a novel variability penalty (5)

which essentially controls ∥∂G(X, τ)/∂τ∥. However, the estimated Ĝ(X, τ) also depends on model

complexity ∥∂G(X, τ)/∂X∥. This indicates that tuning the model complexity of guc(X) might be

another potential way to solve the vanishing variability problem.

In Section 2.2, we conducted a simple simulation study under the model, Yi = X⊤
i β + ϵi, i =

1, . . . , n, where Xi
iid∼ N (0, I20), ϵi

iid∼ N (0, 1), the coefficients in β are equispaced over [−2, 2],

and the sample size is n = 2000. Figure 2 of the main manuscript illustrated that GQR (with-

out any variability penalty) can encounter severe vanishing variability – essentially collapsing to a
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point mass – even when dealing with a simple linear model. We also showed in Section 2.2 that

PGQR (i.e. GQR with a variability penalty function) avoids the vanishing variability by control-

ling ∥∂G(X, τ)/∂τ∥. In this example, both GQR and PGQR were constructed by a feedforward

neural network (FNN) with three hidden layers and 1000 neurons per hidden layer. Here, GQR

is heavily overparameterized, i.e. the number of learnable parameters in the FNN is much larger

than the number of training samples. As discussed in Section 2.2, the main motivation for over-

parameterization is that it improves the generalization and robustness of the model (Allen-Zhu

et al., 2019; Zhang et al., 2021; Soltanolkotabi et al., 2019; Montanari and Zhong, 2022). But in

the case of nonparameteric quantile estimation, overparameterization can also lead to more severe

vanishing variability. This is because the GQR loss (3) actually achieves the minimum value of

zero when Ĝ(Xi, τ) = Yi, i = 1, . . . , n, and a very complex model is likely to perfectly interpolate

the observed responses.

Therefore, instead of using a variability penalty on an overparameterized model, it is also

very natural to consider controlling the model complexity ∥∂G(X, τ)/∂X∥ by simply choosing a

simpler FNN structure guc(X). A simpler model would not be overparameterized, and therefore,

it is a promising alternative way to avoid vanishing variability. To investigate whether tuning

model complexity indeed helps to avoid this phenomenon, we considered two different (simpler)

FNN settings for the simple linear example that we presented in Section 2.2. We applied these

simple FNN structures to (non-penalized) GQR so we could see the impact of ∥∂G(X, τ)/∂X∥ on

vanishing variability.

To be more specific, we denote the model GQR1 as (non-penalized) GQR fit with a simple

FNN with two hidden layers, each having 50 hidden neurons. This setting is similar to the network

structure in Zhou et al. (2023). The model GQR2 is (non-penalized) GQR fit with an even simpler

FNN architecture with only one hidden layer and five hidden neurons. This setting is similar to

that considered by Cannon (2018) and Moon et al. (2021). We compared GQR1 and GQR2 to

PGQR on the same out-of-sample test data, where the optimal penalty parameter λ⋆ in PGQR

was chosen according to Algorithm 1 in the main manuscript. These results are displayed in Figure

9 (GQR1 vs. PGQR) and Figure 10 (GQR2 vs. PGQR).
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Figure 9: Plots of the estimated conditional densities p(Y | Xtest) for three different test observations
under GQR1 and PGQR.

Figure 10: Plots of the estimated conditional densities p(Y | Xtest) for three different test observations
under GQR2 and PGQR.

It is obvious from Figure 9 that the simpler model GQR1 (non-penalized GQR with two hidden

layers and 50 nodes per hidden layer) mitigates vanishing variability a little bit, but it still suffers

from this problem by underestimating the true variance. Looking at the results for GQR2 (non-

penalized GQR with one hidden layer and 5 hidden nodes) in Figure 10, the first two plots indicate

that an even simpler FNN structure helps to avoid vanishing variability phenomenon for these

particular test points. However, the third plot in Figure 10 shows that GQR2 can still encounter the

vanishing variability problem for other test observations, with significant variance underestimation.

From this simple example, we can see that even though we applied an extremely shallow FNN,

vanishing variability can still occur. However, reducing the FNN complexity does appear to make

vanishing variability less pronounced. Although a very simple model might not result in exact

interpolation of the training labels, it nevertheless does not entirely fix variance underestimation.

In short, controlling ∥∂G(X, τ)/∂X∥ by tuning the FNN complexity for guc(X) fails to completely
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avoid vanishing variability. This simple example demonstrates the distinct need to use a variability

penalty to control ∥∂G(X, τ)/∂τ∥ (rather than just ∥∂G(X, τ)/∂X∥).

Figures 9 and 10 also show that the overparameterized PGQRmodel does a better job recovering

the true conditional density p(Y | X) – and therefore also estimates the true conditional quantile

functions better – than the (non-penalized) GQR models with simpler FNN structures guc(X).

This may be because a simple neural network inevitably has less expressive power than a more

complex one. By using (overparameterized) PGQR with a variability penalty, we are not only free

of vanishing variability, but we also fully realize the well-known benefits of overparameterization

(Allen-Zhu et al., 2019; Zhang et al., 2021; Soltanolkotabi et al., 2019; Montanari and Zhong, 2022).

D.2 Sensitivity Analysis of PGQR to the Choice of α

As mentioned in Section 2.2 of the main manuscript, we choose to fix α > 0 in the variability

penalty (5). The main purpose of α is to ensure that the logarithmic term in the penalty is always

well-defined. In this section, we conduct a sensitivity analysis to the choice of α. To do this, we

generated data using the same settings from Simulations 1 through 6. We then fit PGQR with

eight different choices for α ∈ {0.5, 1, 5, 10, 20, 30, 40, 50} and evaluated the performance of these

eight PGQR models on out-of-sample test data. Table 2 shows the results from our sensitivity

analysis averaged across 20 replicates.

We found that in Simulations 1 through 4 and Simulation 6, PGQR was not particularly sensi-

tive to the choice of α. PGQR was somewhat more sensitive to the choice of α in Simulation 5 (i.e.

when the true conditional variance is very small), with larger values of α leading to higher PMSE

for the conditional expectation and conditional standard deviation. In practice, we recommend

fixing α = 1 as the default α for PGQR to perform well. This choice of α = 1 leads to good

empirical performance across many different scenarios.
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Simulation 1 Simulation 2 Simulation 3
α E(Y | X) sd(Y | X) Cov (Width) E(Y | X) sd(Y | X) Cov (Width) E(Y | X) sd(Y | X) Cov (Width)

0.5 0.39 0.41 0.95 (23.60) 0.43 0.18 0.91 (7.69) 0.36 0.09 0.89 (5.93)

1 0.42 0.34 0.95 (23.49) 0.38 0.11 0.93 (8.14) 0.30 0.09 0.92 (6.61)

5 0.36 0.31 0.95 (23.41) 0.31 0.07 0.94 (8.83) 0.25 0.06 0.96 (6.60)

10 0.32 0.30 0.95 (23.40) 0.29 0.06 0.95 (9.02) 0.25 0.07 0.95 (6.55)

20 0.32 0.27 0.95 (23.74) 0.28 0.07 0.94 (9.11) 0.22 0.06 0.95 (6.52)

30 0.32 0.35 0.95 (24.20) 0.29 0.07 0.94 (9.09) 0.21 0.07 0.95 (6.45)

40 0.36 0.49 0.96 (24.42) 0.28 0.07 0.94 (8.91) 0.21 0.07 0.94 (6.45)

50 0.33 0.34 0.97 (24.15) 0.29 0.07 0.95 (9.15) 0.25 0.06 0.95 (6.63)

Simulation 4 Simulation 5 Simulation 6
α E(Y | X) sd(Y | X) Cov (Width) E(Y | X) sd(Y | X) Cov (Width) E(Y | X) sd(Y | X) Cov (Width)

0.5 0.14 0.01 0.96 (3.95) 0.004 0.0001 0.92 (0.38) 6.88 59.65 0.78 (17.08)

1 0.15 0.07 0.95 (4.33) 0.004 0.0001 0.93 (0.42) 7.20 57.75 0.79 (17.72)

5 0.14 0.08 0.96 (4.50) 0.005 0.03 0.99 (1.01) 7.20 56.74 0.79 (18.80)

10 0.13 0.08 0.95 (4.39) 0.007 0.06 0.99 (1.33) 6.63 58.71 0.78 (18.14)

20 0.13 0.09 0.95 (4.49) 0.007 0.08 0.99 (1.64) 6.33 59.26 0.78 (17.97)

30 0.14 0.12 0.95 (4.39) 0.008 0.08 0.99 (1.69) 7.07 57.88 0.79 (18.72)

40 0.13 0.07 0.95 (4.29) 0.007 0.08 0.99 (1.69) 6.86 57.77 0.79 (18.70)

50 0.15 0.14 0.94 (4.42) 0.009 0.10 0.99 (1.81) 6.69 58.25 0.78 (18.55)

Table 2: PGQR results with different choices of α ∈ {0.5, 1.0, 5.0, 10.0, 20.0, 30.0, 40.0, 50.0} in the vari-
ability penalty for Simulations 1 through 6. This table reports the average PMSE for the conditional
expectation and standard deviation, as well as the coverage rate (Cov) and the average width of the 95%
prediction intervals. Results were averaged across 20 replicates.
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