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Abstract We study Bayesian group-regularized estimation in high-dimensional
generalized linear models (GLMs) under a continuous spike-and-slab prior.
Our framework covers both canonical and non-canonical link functions and
subsumes logistic, Poisson, negative binomial, and Gaussian regression with
group sparsity. We obtain the minimax {5 convergence rate for both a maxi-
mum a posteriori (MAP) estimator and the full posterior distribution under
our prior. Our theoretical results thus justify the use of the posterior mode as
a point estimator. The posterior distribution also contracts at the same rate as
the MAP estimator, an attractive feature of our approach which is not the case
for the group lasso. For computation, we propose expectation-maximization
(EM) and Markov chain Monte Carlo (MCMC) algorithms. We illustrate our
method through simulations and a real data application on predicting human
immunodeficiency virus (HIV) drug resistance from protein sequences.

Keywords generalized linear model - group sparsity - spike-and-slab -
spike-and-slab group lasso - posterior contraction - rate of convergence -
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1 Introduction
1.1 Motivation

Generalized linear models (GLMs) (McCullagh and Nelder 1989) are widely
used in practice and provide a unified way to model both continuous and
discrete responses given a set of covariates. Suppose that we observe n inde-
pendent observations {(x;, i)}, where x; = (z;1,...,2;,) " € RP denotes a
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vector of p covariates for the ith observation. GLMs assume that the response
variable y; belongs to the exponential family with conditional density,

fiyi | xi) = exp {yiti — b(0;) + c(y:)} - (1.1)

where ;= 0,(x;) € © C R is the natural parameter depending on x;, b(-) and
¢(+) are known functions, and the cumulant function b is assumed to be twice
differentiable with b”(6) > 0 for all § € ©. The family (1.1) includes the Gaus-
sian, Bernoulli, binomial, Poisson, negative binomial, and gamma distributions
(McCullagh and Nelder 1989). The conditional mean E(y; | x;) = ¥'(6;) is re-
lated to a linear combination of the covariates x; through a differentiable link
function h so that (hobd') : © — R is a strictly increasing function, i.e.

P
(hob’)(&i) :Zl‘ijﬁj, 1= 1,...,n, (12)

j=1
where 8 = (1, .. .,BP)T € RP is the vector of regression coefficients to be

estimated. In practice, h is often chosen to be the canonical link function
h = (V')~1. This is the case for Gaussian linear regression, logistic regression,
and Poisson regression. However, h can also be chosen to be a non-canonical
link function. Probit regression and negative binomial regression with a log
link are examples of GLMs with non-canonical link functions.

Nowadays, it is common to collect datasets where the total number of co-
variates p is large. In this “large p” setting, the covariates also often exhibit
a grouping structure. For example, in genomic data, genes within the same
biological pathway function together as a group to affect a clinical phenotype
such as disease status or survival time (Huang et al. 2012). At the individual
gene level, mutations in an amino acid sequence can also be represented with
group structure (Rhee et al. 2006). In our motivating data application in Sec-
tion 7, each position of a protease gene sequence is represented by a group of
binary variables, where each binary variable indicates the presence or absence
of a specific amino acid. In MRI imaging, voxels within the same brain region
naturally form a group (Lee and Cao 2021; Wen et al. 2019). In semipara-
metric GLMs, continuous functions of the covariates are often estimated by
groups of nonlinear basis functions (Lian 2012). Finally, categorical covariates
with multiple levels can be represented as groups of dummy variables for each
non-baseline category (Breheny and Huang 2015; Meier et al. 2008).

In these scenarios, it is desirable to take advantage of the known grouping
structure in order to improve estimation and prediction. Suppose that we
have G groups. Then we can express each ith covariate vector x;, € RP as
x; = (X;1,...,%,;) ", where x;, € R™ is a group of covariates of size m, and
Z?zl mg = p. In this case, we relate the covariates to the conditional mean
E(y; | x;) = b/'(6;) through the linear relationship,

G
(hob')(0:) = xBy i=1,...,n, (1.3)
g=1
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where B, € R is the gth vector of regression coefficients corresponding to
the gth group. It is clear that (1.2) is a special case of the grouped regres-
sion model (1.3) where G = p, and my = 1 for all g € {1,...,G} (i.e. each
regression coefficient in (1.2) is its own “group” of size one). Therefore, (1.3)
provides a very natural generalization of the traditional GLM structure (1.2).
To distinguish these two structures, we henceforth refer to the model (1.3) as
a grouped GLM and the model (1.2) as an unstructured GLM.

When the number of groups G is moderate or large in (1.3), some form of
regularization is often desired. In the frequentist literature, penalized group
estimators have been extended to GLMs with group structure (1.3) (Meier
et al. 2008; Lian 2012; Blazere et al. 2014; Breheny and Huang 2015). In the
Bayesian literature, spike-and-slab priors (Tang et al. 2017a; Lee and Cao
2021) and automatic relevance determination priors (Wen et al. 2019) have
been used as sparsity-inducing priors in grouped GLMs. These methods all
shrink a large number of the groups in (1.3) towards zero, so that only a few
of the groups of covariates are significantly associated with the mean response.

In this paper, we adopt the Bayesian approach and employ a group spike-
and-slab prior (to be introduced in Section 2) for estimating the 3,’s in (1.3).
We study our method theoretically and introduce computational algorithms
for implementing it. Our theory and algorithms apply to any member of the
exponential family (1.1) and encompass both canonical and non-canonical link
functions. Further, even when there is no known group structure, our results
can still be applied to the traditional unstructured GLM (1.2). Thus, our
theoretical and computational framework is quite broad.

1.2 Related work and our contributions

The literature on theory for Bayesian high-dimensional GLMs is quite sparse.
Jiang (2007), Jeong and Ghosal (2021), and Tang and Martin (2024) have also
studied posterior contraction rates for Bayesian GLMs in high dimensions.
However, our work departs from these other papers in several important ways.
First, we study GLMs under group sparsity (1.3). This setting is more general
than the unstructured setting (1.2) considered by Jiang (2007), Jeong and
Ghosal (2021), and Tang and Martin (2024). However, since our model sub-
sumes the traditional GLM (1.2) (where all G groups in (1.3) have size one),
we obtain results for both models (1.2) and (1.3).

Secondly, our study is conducted under a continuous spike-and-slab prior,
to be introduced in Section 2. In contrast, Jiang (2007), Jeong and Ghosal
(2021), and Tang and Martin (2024) all study point-mass (discontinuous)
spike-and-slab priors. In these other papers, a model complexity prior is used
to first select a random subset of s < n predictors. Conditionally on the chosen
set, the s coordinates are then endowed with a multivariate prior, while the
other regression coefficients are modeled with a Dirac delta density at zero. In
contrast, we employ an absolutely continuous prior which needs to be handled
differently from these other papers.
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Finally, we characterize the convergence rate of both a maximum a poste-
riori (MAP) estimator and the full posterior distribution. In contrast, Jiang
(2007), Jeong and Ghosal (2021), and Tang and Martin (2024) studied only the
full posterior distribution but not any specific Bayesian point estimators. One
may wonder why it is necessary to study MAP estimators and the posterior
distribution separately. First, practitioners typically report a point estimate
(e.g. the posterior mean, median, or mode) when they employ Bayesian meth-
ods. Thus, it is important to study the properties of these point estimators.
Secondly, many researchers have shown that different Bayesian point estimates
may have different asymptotic properties or behave very differently from the
full posterior. For example, in the sparse normal means model, Johnstone and
Silverman (2004) showed that the posterior median under a point mass spike-
and-slab prior attains the minimax risk, whereas the posterior mean converges
at a slower, suboptimal rate. Under a different empirical Bayes spike-and-slab
prior, Castillo and Mismer (2018) showed that the posterior mean and median
both obtain the optimal rate, but the full posterior converges at a subopti-
mal rate. In high-dimensional linear regression under a Laplace prior, Castillo
et al. (2015) showed that the posterior mode converges at the near minimax
rate but the full posterior distribution converges much more slowly than the
mode. These examples reinforce the argument that Bayesian point estima-
tors need to be analyzed separately from the full posterior. In this work, we
focus on a local MAP estimator rather than the posterior mean or median,
because of its practical appeal. Unlike the posterior mean or median, local
MAP estimators under our spike-and-slab prior result in exact sparsity and
are computationally faster to calculate. Given these appealing features, we aim
to elucidate the theoretical optimality of MAP estimation for our model.

In short, our main contributions can be summarized as follows:

1. We study a heavy-tailed, continuous spike-and-slab prior for grouped GLMs
(1.3) with both canonical and non-canonical link functions. This class of
models is much broader than the grouped linear regression model studied
by other authors (Yuan and Lin 2006; Bai et al. 2022; Nardi and Rinaldo
2008), since it encompasses any member of the exponential family (1.1)
and allows for many possible link functions besides the identity link.

2. We show that both a local MAP estimator and the full posterior distri-
bution under our spike-and-slab prior converge at the minimax-optimal £
error rate in GLMs with group sparsity. Our results thus justify the use
of the posterior mode as a point estimator in high-dimensional Bayesian
GLMs. We are not aware of any previous theoretical studies of Bayesian
point estimates under spike-and-slab priors in high-dimensional GLMs. At
the same time, the posterior contraction rate also implies that the full
posterior distribution provides valid inference in the sense that posterior
credible sets have radius of an optimal size.

3. For efficient point estimation under our model, we introduce an expectation-
maximization (EM) algorithm. For fully Bayesian posterior inference, we
provide Markov chain Monte Carlo (MCMC) algorithms.
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The rest of this paper is structured as follows. In Section 2, we describe our
prior specification and discuss Bayesian estimation of 3. In Section 3, we study
the convergence rate of a local MAP estimator under our approach. In Section
4, we characterize the convergence rate for the entire posterior distribution
and show that it can overcome the slow posterior contraction rate of the group
lasso. Section 5 discusses how to implement our method. We conduct simula-
tion studies in Section 6 and an analysis of an HIV drug resistance dataset in
Section 7. Most of the proofs are deferred to the Supplementary Material.

1.3 Notation and preliminaries

For two sequences of positive real numbers a,, and b,,, we write a,, = o(b,,) or
ap, < by if limy, o0 an /by, =0, an, = O(by,) or an < by, if |a,/bs| < M for some
positive real number M independent of n, and a,, < b, if b, < a, < b,. For
a set S, we denote its cardinality by |S|, and for a subset 7 C S, T¢ means
Te=S\T.

The £, ¢2 and ¢1 norms of a vector v are denoted by ||v||co, [|V||2 and ||v]1
respectively. For an m x n matrix A with entries a;;, we denote ||All2 =
maxy <i<n (D552, a?;)*/? as the maximum row length of A and [|A[lmax =
max; j |a;;| as the maximum entry in absolute value. For a symmetric ma-
trix C, we denote its minimum and maximum eigenvalues by Apin(C) and
Amax(C) respectively. For a vector x, diag{x} denotes the diagonal matrix
determined by entries of x. If f is a univariate function, then f(x) means that
f is applied elementwise to the entries in the vector x. The notation 1,, means
an n-dimensional vector of all ones, while 0,, denotes an n-dimensional zero
vector.

To succinctly express a GLM with group sparsity (1.3) under the expo-
nential family (1.1), we denote Y = (y1,...,y,)" € R", X = (Xy,...,Xg) €
R™P and B = (B],...,8L)" € RP, where p = 25:1 mg. We define the
function € as £ = (hob')~!. Then the log-likelihood for (1.3) can be written
(up to normalizing constant) as

6a(B) = Y TE(XB) — 1, b(£(XB)). (1.4)
The gradient of £, (3) is then
VE,(8) = X diag{¢'(XB)}(Y — V' (£(X0)))- (1.5)
while the observed information matrix is
~V%,(8) = X" X (B)X, (1.6)
e X(B) = N2(B) — diag{¢"(XB) }diag{Y — V' (£(XB))}, (1.7)
and

() = diag{(h™")"(X)}diag{¢'(Xp)}. (1.8)
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Note that X' $2(8)X is also the Fisher information matrix, or the expected
value of the Fisher information matrix (1.6). Furthermore, if the canonical link
function is used, then X'(8) = £2(8), and (1.7) can be greatly simplified to

X(B) = diag{b"(Xp)}.

2 Prior specification and Bayesian estimation
2.1 Spike-and-slab group lasso

Given a high-dimensional GLM with group structure (1.3), a Bayesian ap-
proach to estimation and variable selection is to put a prior on the parameter
B. For an my x 1 random vector By, we first define the multivariate density
function,
A o= Bgll2
W(BQ | /\) - 2mg7rmg—1p((mg + 1)/2)'

It is important to note that (2.1) is a multivariate Laplace distribution (Fang
et al. 1990), not a multivariate Gaussian. The exponent term of (2.1) contains
the ¢ norm [|B, |2 rather than the squared ¢ norm ||B,]|3. As a result, the
density (2.1) has tails that are heavier than normal. It is easy to see that if
mg = 1, then (2.1) reduces to a univariate Laplace density with scale parameter
A~1. The hyperparameter A controls how concentrated B, is around the zero
vector O,,,, with larger values of A leading to a density that is more peaked
around O, -

To induce group sparsity in 3 under (1.3), we endow 3 with the spike-and-
slab group lasso (SSGL) prior of Bai et al. (2022),

(2.1)

G
©(B) = [T11 =)W (By | Xo) + 0% (By | M), (2.2)

where 6 € (0,1) is a mixing proportion. In (2.2), g is set to be a large value
so that W(B, | Ao), i.e. the “spike,” is highly concentrated around the zero
vector Op,,. Meanwhile, A\; < Ao is set to be small so that &(8, | A1), i.e.
the “slab,” is a diffuse and relatively flat density. In (2.2), the slab density
models the nonzero groups, while the spike density models the zero groups.
The SSGL prior was originally introduced by Bai et al. (2022) in the Gaussian
linear regression model, Y = X3 + €, ~ N,(0,0%I,). This paper extends
the work of Bai et al. (2022) to the much more general GLM setting where the
response variables Y can also be discrete or non-Gaussian (e.g. binary, bino-
mial, Poisson, negative binomial, gamma, etc.). Using the prior (2.2), we also
develop asymptotic theory for point estimation in high-dimensional Bayesian
GLMs, which to our knowledge, has not been studied before.

When m; = ... = mg = 1, the SSGL prior (2.2) reduces to a two-
component mixture of univariate Laplace densities,

m(8) = [][(1=0)e(B; | Xo) + 04(B; | M)].- (2.3)

Jj=1
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where ¥(8; | A\) = (A/2)exp(—A|B;|) denotes the density of a univariate
Laplace distribution. The prior (2.3) is the spike-and-slab lasso (SSL) orig-
inally introduced by Rockova and George (2018) in non-grouped linear regres-
sion. In order to conduct Bayesian inference for unstructured GLMs (1.2), we
can place the SSL prior (2.3) on the individual regression coefficients in (1.2).
Tang et al. (2017b) extended the SSL (2.3) to high-dimensional GLMs. How-
ever, the theoretical properties for the SSL in GLMs have thus far not been
investigated. As a byproduct of our theoretical analysis of the SSGL (2.2), we
also obtain the rates of convergence for the SSL (2.3) in GLMs in Sections 3
and 4.

2.2 Bayesian estimation

After endowing the groups of regression coefficients 3 in (1.3) with an appro-
priate prior distribution 7(3), we obtain the posterior distribution for 3,

 epll(B)r(B)
"B 1Y) = T (6 (8))7(8)dB’

where ¢,,(8) is the log-likelihood (1.4). The posterior (2.4) is typically in-
tractable, but Markov chain Monte Carlo (MCMC) can be used to draw sam-
ples from the approximate posterior. From (2.4), we also see that the log-
posterior (up to normalizing constant) is

(2.4)

logm(B | Y) = £, (B) +log m(B). (2.5)
Hence, a very natural point estimator for 3 is a local MAP estimator B, i.e.
B such that Vlog Tr(é |Y)=0,. (2.6)

Local MAP estimators (or local posterior modes) are useful point estimates to
consider because standard optimization algorithms can be used to rapidly ob-
tain an estimate 3. These optimization algorithms are often faster and much
more scalable than MCMC algorithms. In general, local MAP estimators may
not be unique, and the log-likelihood function £,,(3) may be unbounded. How-
ever, if the prior 7(3) in (2.5) is proper, does not depend on the observed data,
and sufficiently restricts the parameter space for 8 (e.g. by shrinking most of
the coeflicients in 3 towards zero), then the posterior density 7(8 | Y) will be
proper and bounded, i.e. supgm (3 | Y) < oo. This enables us to find a local

MAP estimator (2.6).
In particular, if 7(8) = Hle ¥(B, | A), where &(- | A) is the multivariate

Laplace prior (2.1), then (2.5) becomes

G
log (B Y) =£u(B) = A _[1Bgll2, (2.7)
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which is the objective function for the group lasso estimator of Yuan and Lin
(2006). Thus, the group lasso estimator corresponds to the MAP estimator
under independent multivariate Laplace priors (2.1) on the 8,’s, and the MAP
estimator for each group B, is either exactly 0,,, or nonzero.

If instead, we use the SSGL prior (2.2) for w(3) in (2.5), then local SSGL
MAP estimators (2.6) will also be exactly sparse, since the mixture compo-
nents in (2.2) are both multivariate Laplace. However, whereas the group lasso
(2.7) applies the same amount of shrinkage A to every group, the SSGL (2.2)
allows for adaptive shrinkage. This is because the slab density W(- | A1) of
the SSGL (2.2) prevents groups with larger coefficients from being downward
biased. The combination of eract group sparsity and adaptive shrinkage of
local MAP estimators (2.6) under the SSGL prior (2.2) makes the SSGL very
appealing for both group selection and estimation. In contrast, neither the pos-
terior mean nor the posterior median under the SSGL prior is exactly sparse.
Estimating the posterior mean or median also often requires the use of MCMC.
In Sections 3.2 and 4.2, we further demonstrate the theoretical advantages of
the SSGL prior (2.2) over the group lasso prior (2.1). SSGL is also empirically
shown to significantly outperform the group lasso in Sections 6 and 7.

3 Characterization of the MAP estimator
3.1 Convergence rate of the MAP estimator

We first theoretically study MAP estimation under the SSGL prior (2.2). Our
goal is to establish the existence of a local MAP estimator (2.6) with the
minimax estimation rate in terms of {5 risk. To the best of our knowledge,
our work is the first one to investigate point estimation under a spike-and-slab
prior in high-dimensional Bayesian GLMs. Other authors (Jiang 2007; Jeong
and Ghosal 2021; Tang and Martin 2024) have only studied the convergence
rate for the full posterior distribution in Bayesian GLMs, which we will also
consider in Section 4.

Suppose the true regression coefficients vector is By = (5(—;1, . ,ﬁJG)T €
RP, where Byy € R™9 is the subvector corresponding to the gth group of size
mg. Then the true model is

G
(hob)(0o:)) = > XiBog, i=1,....n, (3.1)
g=1

where h and b are the known link function and cumulant function respectively,
while fp; is the true natural parameter in (1.1). Further, let Sy C {1,...,G} be
the set of indices of the true nonzero groups in By, with cardinality so = |[So].
Then S§ = {1,...,G} \ Sp. For a p-dimensional vector 8, let Bg, denote
the subvector of 8 with the groups in Sp, and let Bg; be the subvector with
groups in S§. Let X, denote the submatrix of the design matrix X with the



Bayesian Group Regularization in GLMs 9

> ges, Mg columns of X. Recall that 3(3) and §2(3) are the matrices defined
respectively in (1.7) and (1.8).

Without loss of generality, assume that the first s groups in 3y are nonzero,
so that By = (,BJS07 07)". We additionally make the following set of assump-
tions:

(A1) G > n and log G = o(n'/?).
(A2) 5o = o(n'/?/log G) and Mmpyay = O(logn A (log G/logn)), where My =
maxjy<g<g Mmy.
(A3) The design matrix X satisfies the following conditions:
(1) All the entries z;; of X satisfy |z;;| = O(log G).
(ii) Define the neighborhood Ny = {8 € RP : ||§ — Bo|l2 < (solog G/n)'/?}.
For any & € No, Amin(n' X4, 2(8)Xs,) 2 1, Amin(n ™' X 5, £2(0)Xs,) 2
1, and Apax(n™'Xg £2(6)Xs,) < log G/ logn.
(iii) For any group g € S5 and & € Ny, [|X X (8)X4ll2,00 = O(n).
(A4) The observations {(x;,y;)}, satisfy the following conditions:
(i) The responses {y;}7, satisfy E(|ly; — b’ (£(x{ Bo))[¥) < ZE[y?]L*2 for
some L > 0 and every integer k > 2. In addition, Var(y; | x;) < G for

alli=1,...,n.
(ii) For the function & = (hob')~1 in (1.4), ¢'(x/ B) < oo for all B € RP
andi=1,...,n.

Assumption (A1) allows the number of groups G to diverge at a nearly expo-
nential rate with n and is analogous to the growth rate for univariate GLMs
in Fan and Lv (2011). Assumption (A2) allows the number of nonzero groups
sp and the group sizes my’s to diverge but at rates slower than n. Note that
Assumption (A2) implies a sparsity condition on By, where the true By only
contains a small number of nonzero groups. Assumption (A3)(i) holds auto-
matically if the entries of X are uniformly bounded. If the entries of X are
sub-Gaussian with scale factor o, then this assumption also holds with prob-
ability greater than 1 — 2 exp(—Dn/20?) for some constant D > 0.

Assumption (A3)(ii) gives restricted eigenvalue conditions for the subma-
trix Xg, of X. Note that the maximum eigenvalue for n=*X{ £2(8)Xsg, can
diverge as n — oo. Restricted eigenvalue conditions are routinely employed
in the high-dimensional GLM literature (Fan and Lv 2011; Tang and Mar-
tin 2024). These conditions ensure the identifiability of By. It should also
be noted that since our theory covers both canonical and non-canonical link
functions h(-), we require eigenvalue conditions for both n~'X¢ X¥(8)Xs,
and n_lxgoﬂ(é)xso. If a non-canonical link function is used, then in gen-
eral, X(8) # £2(8). However, if the canonical link function is used, then
X(B) = £2(8), and the first two eigenvalue conditions in (A3)(ii) are the
same.

Assumption (A3)(iii) is an irrepresentability-type condition (Zhao and Yu
2006; Fan and Lv 2011), which limits the correlations between the active covari-
ates Xg, and the inactive ones Xg¢. Since X§ 3(8)X, has m, columns and
mg < nforallge{l,...,G}, the condition that [|[X g X(6)Xg[l2,00 = O(n) is
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also fairly mild. In fact, Assumption (A3)(iii) is much weaker than the strong
irrepresentability condition of Zhao and Yu (2006) for the LASSO, which re-
quires that HXESXSO(X;JXSO)*IHOO < C < oo. In contrast, we can allow

[X§, X(8)Xl2,00 to diverge on the order of n. A nearly identical assumption
as Assumption (A3)(iii) was made by Fan and Lv (2011). When G > n, it
does not seem as though this type of irrepresentability condition can be re-
moved. In low-dimensional (i.e. fixed G) settings, Assumption (A3)(iii) is not
needed (Nardi and Rinaldo 2008). However, if G grows much faster than n,
then conditions like (A3)(iii) may be required (Huang et al. 2008; Fan and
Lv 2011). If we consider weaker notions of convergence such as convergence
in o norm or if we focus on the problem of support recovery (i.e. the ability
to asymptotically identify the correct subset of nonzero groups), then we may
also be able to remove the irrepresentability condition (Loh and Wainwright
2017). However, we conjecture that this type of condition is necessary when
considering convergence in f5 norm in the high-dimensional G > n regime.

Assumption (A4)(i) is an assumption on the central moments of the re-
sponse variables and implies that the tails decay exponentially. This assump-
tion is satisfied for the Gaussian, Poisson, Bernoulli, gamma, and Laplace
distributions, among others (Baraud 2010). In addition, the assumption that
Var(y; | x;) < G is a very weak assumption, in light of Assumption (A1) that
allows G = O(e""), for some ¢ € (0,1/2). Assumption (A4)(ii) is also satis-
fied for many GLMs, even if x; 3 is unbounded. For example, the canonical
link function A = (b')~! is usually used in practice, e.g. in logistic, Pois-
son, and Gaussian regression. In this case, {(u) = (h o) 1(u) = u and
&(u) = 1 for all u € R. In negative binomial regression with the log link
h(u) = logu and a given number of failures r, we have b(u) = —rlog(1 — e*),
&(u) = —log(re=™ +1). Thus, &'(u) =r/(r+€*) <1 for all u € R. However,
even if ¢’(u) is unbounded in R, we can still satisfy &' (x; By) < oo if we make
a stronger assumption that || XB8o|lec < 00.

The minimax-optimal ¢5 risk for estimating By in the grouped regression
model (3.1) is {[solog(G/s0) + 2 cq, Mgl/n}'/? (Huang and Zhang 2010).
Under Assumptions (Al)-(A2), the minimax ¢35 convergence rate is of the
same order as (sologG/n)Y/2. Our first theorem below certifies that there
exists a local MAP estimator (2.6) under the SSGL prior (2.2) which achieves
this minimax-optimal rate with respect to the ¢y risk. This justifies the use of
MAP estimation for Bayesian grouped regression with the SSGL prior.

Theorem 1 (convergence rate of a local MAP estimator under SSGL)
Suppose that we have a grouped GLM (3.1), and we endow By with the SSGL
prior (2.2) where the hyperparameters (Ao, A1,0) satisfy Ao = (1 —0)/0 < G°,
where ¢ > 2, and Ay < 1/n. Further, assume that Assumptions (A1)-(A4)
hold. Then there exists a strict local MAP estimator B = (B\go,,é:grg)—r of the

log-posterior (2.5) such that, as n — oo, ,@53 =0 and

1B~ Boll: = 0, (x/lngc’j - (3.2
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Remark 1 We have treated the mixing weight 6 as a deterministic quantity
which depends on G. However, Theorem 1 still holds if we instead put a prior
7(6) on 0, as long as 7(6) satisfies P((1 —0)/0 > G°) > 1 — e~ P01 & where
D > 0 and ¢ > 2. Then, since with probability tending to one, Ay = (1 —
0)/6 > G, we can condition our analysis on the high probability event A =
{(1—-0)/6 > G°} and our theory still holds. This will be satisfied, for example,
when 6 ~ Beta(1,G¢) (Bai et al. 2022).

Remark 2 By the continuous mapping theorem, f (B) is also a consistent esti-
mator of f(Bp) for any function f that is continuous at By. For example, let
S C {1,...,p}, and let Bg be the subvector of B with indices in S. Taking
f(B) = AsB, where Ag € RI®I*? is a matrix with unit vector rows such that
AgsB = Bg, it follows that Bg is a consistent estimator of Bg.

Remark 3 Theorem 1 implies that as n — oo, § < 1/(G°41) — 0. Since § can
be interpreted as the prior probability that the group B, belongs to the slab
density (- | A1) rather than the spike density ¥ (- | Ag), this implies that the
SSGL prior (2.2) will classify a smaller proportion of the groups as nonzero
as n — oo. This matches our assumption that the true proportion of nonzero
groups, i.e. so/G, also decays to zero as n — oco. However, the diffuse slab
W(- | A1) still enables us to identify the true signals. To see this, notice that
the prior probability that 3, belongs to the slab can be written as

X B 0P (By | M)
ps(By) = 0T (B, | M) + (1— )& (B, | Ao)
1

_ . , (3.3)
1+ (352) (:\\—[1)) exp [—(Xo — A1)|Bgll2]

We can see from (3.3) that if 85 # O, then pj(By) ~ 1 as n — co. On the
other hand, if By = 0,,,, then pj(By) ~ 0 as n — oo.

We also have the following corollary which gives the convergence rate of a
local MAP estimator for 8 under the SSL prior (2.3) of Rockovd and George
(2018) on the regression coefficients in unstructured GLMs (1.2).

Corollary 1 (convergence rate of a local MAP estimator under SSL)
Suppose that we have an unstructured GLM (1.2), and we endow By with the
SSL prior (2.3) where the hyperparameters (Ao, A\1,0) satisfy o = (1—0)/0 <
p¢, where p > 2, and \; < 1/n. Further, assume that p > n, logp = o(n'/?),
so = o(n'/?/logp), and Assumptions (A3)-(A4) hold with G replaced by p.
Then there exists a strict local MAP estimator a = (BEO,B—S'—S)T of the log-

posterior (2.5) such that, as n — oo, BSS =0 and

1B~ Boll2 = 0, <\/5° I;’gp> - (3.4)
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Proof The model (1.2) is a special case of the grouped model (1.3) where

my = ... = mg = 1. Since we can also treat the SSL prior (2.3) as a special
case of the SSGL prior (2.2) with my = --- = mg = 1, the result follows from
Theorem 1. O

Theorems 1 and Corollary 1 justify using MAP estimation for point esti-
mation under the SSGL (2.2) and SSL (2.3) priors in high-dimensional GLMs.
In Section 4, we will turn our attention to the asymptotic behavior of the full
posterior distribution.

3.2 Comparison of our work to the group lasso

The group lasso estimator (2.7) of Yuan and Lin (2006) has been studied theo-
retically in GLMs by Blazere et al. (2014). Similar to the SSGL, Blazere et al.
(2014) obtained the convergence rate of O((solog G/n)*/?) for the group lasso.
However, Blazere et al. (2014) require the assumption that 25:1 Vgl Bogll2 <
oo (condition (H.3) in Blazere et al. (2014)) in order to achieve this rate. The
condition that 25:1 Vg llBogll2 < oo seems highly restrictive, especially if
the number of groups G diverges to infinity as in Assumption (A1). The only
way for this assumption to be satisfied in practice is if all of the following con-
ditions hold: (i) the group sizes my do not diverge with n, (ii) the number of
nonzero groups so is fixed and does not diverge with n, and (iii) ||Bg|lco < 00.

In contrast, we do not make such a strong assumption. Theorem 1 allows
both the group sizes my and the number of nonzero groups sy to diverge
(Assumption (A2)), while the maximum signal strength |G|/~ can also grow
to infinity. All of these assumptions clearly violate Condition (H.3) of Blazere
et al. (2014). In short, we have derived the convergence rate for the SSGL MAP
estimator in GLMs under much weaker conditions than those previously used
for the group lasso estimator (2.7). In Section 4.2, we further demonstrate the
advantage of SSGL (2.2) over the group lasso from a fully Bayesian perspective.

4 Characterization of the full posterior
4.1 Posterior contraction rate

For fully Bayesian inference, the minimax rate is a useful benchmark for study-
ing contraction rates, because the posterior cannot contract faster than the
minimax rate (Ghosal et al. 2000). In this section, we analyze the full SSGL
posterior (2.4) and show that the full posterior 7(3 | Y) inherits the nice
theoretical properties of the SSGL MAP estimator (2.6). As discussed in Sec-
tion 1.2, it is not automatically the case that the posterior contracts around
the true parameter By in (3.1) at the same rate as posterior point estimates
(Castillo et al. 2015; Castillo and Mismer 2018). Thus, we require a separate
analysis of the full posterior.
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In order to derive theory for the SSGL posterior in high-dimensional GLMs,
we require a different set of conditions on the design matrix and on the maxi-
mum signal strength of 3. In particular, we replace conditions (A3)-(A4) with
the following conditions. Recall that Sy C {1,..., G} is the set of true nonzero
groups which has cardinality |Sp| = s¢, and £2(3) is defined as in (1.8).

(B3) The design matrix X satisfies the following conditions:
(i) All the entries z;; of X satisfy |z;;| = O(log G).
(ii) For a set of indices S C {1,...,G}, let Xg denote the submatrix
of X whose columns contain the groups g € S. For any S where
IS| < so, we have Amin (R7'X$2(80)Xs) 2 1. Meanwhile, for any
g €{1,...,G} and any B such that |8 — Bo|2 < GM for some M > 1,
Amax(nilx‘:}rn(ﬁ)xg) 5 log G.
(B4) The maximum signal strength satisfies ||Bo||cc = O(log G).

Assumption (B3)(ii) imposes restricted eigenvalue conditions which are stronger
than those in Assumption (A3)(ii). The assumption Apin(n 71X & 2(80)Xs) 2> 1
is required to hold for all submatrices Xg where |S| < sg. The condition
Amax(n™1X] £2(8)X,) < log G also needs to hold for individual submatrices
Xy (not necessarily the entire n x p design matrix X). In contrast, (A3)(ii)
only imposes eigenvalue conditions for a single submatrix Xg, . Intuitively, this
is because in Theorem 1, we only need to be able to find one local mode in a
small neighborhood around Bj. Contrastingly, Theorems 2 and 3 require the
entire posterior (3 | Y) to concentrate all its mass on configurations where
no more than a constant multiple of sy groups in 3 have magnitude much
larger than zero. As a trade-off, however, the irrepresentability condition in
Assumption (A3)(iii) is not needed for the full posterior to contract at the
minimax-optimal rate.

Condition (B4) also replaces the moment conditions on the responses in
(A4) with a more direct condition on the maximum signal strength for By. We
need this condition because the SSGL prior (2.2) must be able to put sufficient
prior mass in a neighborhood of the true 3y for the posterior to contract around
Bo. Taken together, Assumptions (A2) and (B4) imply restrictions on the true
parameter space for 3y, both in terms of the sparsity of 3y and the magnitude
of its entries. Overall, our theoretical results underscore the importance of
studying posterior point estimates separately from the full posterior, because
different conditions may be required for convergence of these two objects.

A crucial difference between our theory and that of Jiang (2007), Jeong
and Ghosal (2021), and Tang and Martin (2024) is that the SSGL prior (2.2)
is an absolutely continuous spike-and-slab prior. Although the posterior mode
under (2.2) is exactly sparse, the SSGL posterior is continuous and thus puts
zero probability on exactly sparse vectors. Therefore, in order to analyze the
full posterior (2.4), we must resort to a notion of “approximate” sparsity
known as the generalized dimensionality (Bhattacharya et al. 2015; Rockova
and George 2018; Bai et al. 2022). Following Bai et al. (2022), we use a small
quantity w, > 0 to define the generalized inclusion indicator v, (8,) and
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generalized dimensionality |v(3)| respectively as

G
Vs, (Bg) = 1(1Bqll2 > wg) and [w(B)] =) v, (By). (4.1)
g=1
For the threshold w, in (4.1), we use
1 1—0XN"
= 1 2 4.2
RPN Og[ 9 xl"g]’ (42)

where (A\g, A1, 0) are the hyperparameters in the SSGL prior (2.2). As described
in Bai et al. (2022), any vectors 3, that satisfy ||B4||2 = w, are the intersection
points between the spike density ¥(- | A\g) and the slab density (- | A1) in
the SSGL prior (2.2). Therefore, if ||By||2 > wy, then B, is much more likely to
belong to the slab rather than the spike. This also implies that if the threshold
wy in (4.2) tends to zero as n — oo for all g € {1,...,G}, then |v(B)| can
estimate the number of nonzero groups in 3 as n — oo.

We first establish in Theorem 2 that the posterior 7(8 | Y) under the SSGL
prior (2.2) asymptotically puts all of its mass on vectors where the generalized
dimensionality (4.1) is no larger than a constant multiple of the true model
size sg. That is, the SSGL posterior concentrates on approximately sparse sets
in high-dimensional GLMs. Theorem 3 then verifies that the SSGL posterior
contracts at the minimax-optimal rate around the true parameter By. In the
subsequent theorems, the notation Ey denotes the expectation operator with
the true parameter Gy in (3.1).

Theorem 2 (posterior concentration on approximately sparse sets)
Assume the same setup as Theorem 1, and suppose that Assumptions (Al1)-
(A2) and (B3)-(B4) hold. Then for some K1 > 1,

Eoll (8: |v(8) > Kiso | Y) = 0 (4.3)

Theorem 3 (posterior contraction rate under SSGL) Assume the same
setup as Theorem 1, and suppose that Assumptions (A1)-(A2) and (B3)-(B4)
hold. Then for some Ko >0, as n — oo,

Eoll (ﬁ: 18— Boll2 > KQW ‘ Y) —0. (4.4)

Remark 4 Similarly as with the local MAP estimator in Theorem 1, we can
also obtain the same posterior contraction rate for the full posterior when we
endow 6 in (2.2) with a prior 7(0). As long as w(6) satisfies P((1 —0)/60 >
G¢) > 1—e P30l G/n where D > 0 and ¢ > 2, then \g = (1—6)/0 > G with
probability tending to one, and the theory still holds. This will be the case if
6 ~ Beta(1l,G¢). See Bai et al. (2022) for the proof in the case of Gaussian
grouped linear regression, which also holds in the GLM setting.
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Remark 5 If f(B) is a continuous function, then the posterior distribution for
f(B) is also consistent at f(B3g). In particular, this implies that the marginal
posteriors for the individual coefficients or subsets of the coefficients in 3 also
concentrate around their respective true values (see Remark 2).

Remark 6 In the cases of Gaussian regression and logistic regression, one may
be able to remove the restriction (B4) on the maximum signal strength (see,
e.g., Castillo et al. (2015), Rockova and George (2018), and Atchadé (2017)).
However, since we consider GLMs under the general exponential family (1.1),
it seems unlikely that a condition such as (B4) can be totally removed for
GLMs in general. To see why, consider Poisson regression, where the cumulant
function is b(Ay;) = X B and the diagonal entries of X(8,) are {€Xi Po}n_ .
In this scenario, it seems difficult to control the approximation error without
any restrictions on ||Bo||co-

The following corollary is immediate from Theorem 2. If we have an un-
structured GLM (1.2) and we endow the regression coefficients in By with
the SSL prior (2.3) of Rockovd and George (2018), we obtain the following
posterior contraction rate.

Corollary 2 (posterior contraction rate under SSL) Assume the same
setup as Corollary 1. Suppose that p > n, logp = o(n'/?), sy = o(n'/?/logp),
and Assumptions (B3)-(B4) hold with G replaced by p. Then for some K3 > 0,

as n — oo,
solo
Eol1 <B: 18 — Boll2 > KgW ‘ Y) — 0. (4.5)

Theorem 3 and Corollary 2 show that for high-dimensional GLMs, the
posterior distributions under the SSGL (2.2) and SSL (2.3) priors also converge
at the fastest possible (i.e. the minimax) rates. It is not necessarily the case
that the full posterior has the same asymptotic behavior as posterior point
estimates. For instance, Castillo and Mismer (2018) and Castillo et al. (2015)
provide examples where the full posterior actually contracts much slower than
the posterior mean, median, or mode.

Our results also suggest that the SSGL and the SSL posteriors 7(8 | Y)
provide valid inference in high-dimensional GLMs. Determining the posterior
contraction rate of the full posterior is often the first step towards obtaining
frequentist guarantees about uncertainty quantification for Bayesian proce-
dures (Rousseau 2016). In particular, the posterior contraction rate gives an
indication as to how large we can expect the posterior credible sets to be
(Rousseau 2016). However, beyond just their size, more detailed study is typ-
ically required to guarantee that these credible sets are also honest, or have
asymptotic coverage probability greater than or equal to the prescribed confi-
dence level 1 — a, a0 € (0,1) (Rousseau 2016). The issue of honest coverage of
posterior credible sets is beyond the scope of this paper.
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4.2 Suboptimality of the group lasso for fully Bayesian inference

In Section 3.2, we demonstrated that there exists a local MAP estimator (2.6)
for SSGL which converges at the minimax-optimal rate under weaker assump-
tions than those previously assumed for the group lasso (2.7). It turns out that
from the fully Bayesian perspective, the SSGL also has an advantage over the
group lasso. As discussed in Section 2.2, the group lasso estimator (2.7) is the
MAP estimator under the prior m(3) = Hle W(B, | A), where &(- | \) is a
single multivariate Laplace density (2.1). In contrast to the two-group SSGL
(2.2), however, the group lasso posterior might contract much slower than
its posterior mode. This renders the group lasso less useful for uncertainty
quantification. An example of this phenomenon is provided in the following
proposition. Recall that By = (Bg;,---,Bgg) | » where By, is the gth group of
size my.

Proposition 1 Suppose that Y ~ N, (Bo,1,) and all the group sizes are con-
stant and equal, i.e. m; = --- = mg = m where 1 < m < oo. Further, assume
that Bo1 # 0y, with ||Bo1ll2 = L < oo, while Bog = Oy, for all g € {2,...,G}.
Suppose that we endow By with the prior w(3) = Hle (B, | A), where
W(- | A\) is the group lasso prior in (2.1). Then if A < \/2logn, the MAP
estimator ,@ satisfies

Eo||B — Boll2 S v/2logn as n — oo, (4.6)

but for some K4 > 0,

Eo 1 (51 18 = Bollz < Ka, logn ‘ Y) — 0 asn — oo. (4.7)

Proposition 1 implies that the full posterior distribution under the group
lasso prior may asymptotically put all of its mass in an ¢5 ball with radius that
is substantially larger than the convergence rate of the posterior mode. Namely,
under the grouped GLM (1.3) where X = I, and the exponential family
(1.1) distribution is the normal distribution, the group lasso MAP estimator
B has an expected ¢5 risk of the order y/2logn when the shrinkage parameter
A is chosen of the order v/2logn. This is the minimax rate for estimating
Bo (Donoho et al. 1992). However, with this same choice of A, the posterior
m(B | Y) places zero probability on the ball {3 : ||8 — Boll2 < v/n/logn} as
n — oo, and y/2logn < /n/logn when n is large. Intuitively, the discrepancy
in the convergence rate between the MAP estimator and the full posterior
is because there is a conflict between shrinking the coefficients to zero and
optimally estimating the nonzero signals. In order to estimate very sparse
parameters well, the group lasso needs to set A to be large; but if A\ is too
large, then there is too much bias in the resulting estimator. The addition of
the slab density (- | A1) in the SSGL prior (2.2) alleviates this tension by
preventing overshrinkage of true signals. Thus, unlike the group lasso, the full
SSGL posterior (2.4) also contracts at the minimax ¢s convergence rate.
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5 Implementation of SSGL for GLMs
5.1 EM algorithm for MAP estimation

We first adopt the penalized likelihood perspective and perform MAP estima-
tion for GLMs under the SSGL model. The MAP estimator (2.6) is appealing,
not just because of its nice theoretical properties, but also because it is ezactly
sparse. Thus, the MAP estimator can be used for both estimation and variable
selection in GLMs. To obtain the MAP estimator, we extend the EM variable
selection (EMVS) approach of Rockovéd and George (2014) to the GLM setting
with grouped variables.

For the theoretical results in Sections 3 and 4, we treated the mixing pro-
portion 6 in (2.2) as a deterministic quantity (that depends on n and G). Our
theoretical results still hold with a prior on 6, as long as the prior ensures that
A={(1-0)/0 > G° c > 2} is a very high probability event (see Remarks 1
and 4).

For practical implementation, we also recommend endowing 6 with a prior
m(0) in order to model the inherent uncertainty in 6 and adaptively learn the
true sparsity level from the data. To this end, we endow 6 in (2.2) with a beta
prior with shape parameters a > 0,b > 0,

0 ~ B(a,b). (5.1)

Our prior specification for (3, 6) is then given by 7(83,0) = w(8 | 0)7(0), where
m(B | 6) is as in (2.2) and () is as in (5.1). The complete log-posterior is
then

logm(B3,0 1Y) =4£,(8)+1logn(B]|0) + log (). (5.2)

We use a variant of the EMVS algorithm (Rockova and George 2014) to iter-
atively solve for the MAP estimator (3,6) in the optimization problem,

(3, f) = argmax log7(3,01Y). (5.3)
BERP,0€(0,1)

The EMVS approach of Rockova and George (2014) introduces latent variables
¥=(n,---,7¢), v¢ € {0,1}, where 7, = 1 indicates that the gth group of
coefficients 3, should be included in the model. These indicator variables are
treated as missing data in the E-step of our algorithm. To be precise, we
reparameterize the SSGL prior (2.2) as a beta-Bernoulli prior,

a

(B 7)) =] (1 =7)%(By | o) + 74P (By | M),

Q
Il
-

(5.4)
079(1 — )},

o

m(y|0)=

Q
Il
-
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where ~ is a binary vector. As shown in Section C of the Supplementary
Material, E[v, | Y, 3,0] = p;(Bq,0), where

_ 0% (By | M)

S0P (By | M)+ (1 0)(By | No)
is the conditional posterior probability that 3, is drawn from the slab dis-
tribution rather than from the spike. In the E-step, we compute pg(t_l) =
p;(ﬁ_,(]t_l),e(tfl)) = Efy, | Y,B807Y.00"V] g = 1,...,G. With the hyper-
prior (5.1) on 6, we then update 6 in the M-step as

a—1+ Zle p;(til)

Py(By, 0) (5.5)

(t) —
o a+b+G—2 (56)
In the M-step, we update 3 as
G
B = arg max {f(ﬂ) DI ﬁgllz} ; (5.7)
s prr

where each )\;(t_l) = Alpg(t_l) + Ao(1 —p;(t_l)) is an adaptive weight ensur-
ing that insignificant groups are shrunk aggressively to zero, while significant
groups incur minimal shrinkage. The objective (5.7) is simply a group lasso op-
timization with known group-specific weights (Xlk(tfl), R /\g(tfl)). In Section
C of the Supplementary Material, we describe how to efficiently solve (5.7). In
summary, our EMVS algorithm proceeds as follows.

1. Tnitialize (3, 0()). For example, we can initialize 3(°) = 0,, and 6(*) =
0.5.

2. Fort =1,2,..., repeat until convergence:
i. E-step: For ¢ = 1,...,G, compute p;(t_l) = p;(,ﬁg_l),ﬁ(t—”) as in
(5.5).

ii. M-step: Update §(*) as in (5.6) and B as in (5.7).

To determine convergence of the algorithm, we recommend using the criterion
1B® —B=1|12/18% V|2 < &, where ¢ is a small value (e.g. ¢ = 107%). Since
the EM algorithm has the ascent property, our algorithm is guaranteed to
converge to a local mode.

5.2 Choice of hyperparameters

The performance of the SSGL is mainly governed by the three parameters
(Mo, A1, 0) in the prior (5.4) on 8. We recommend fixing the slab hyperparam-
eter Ay = 1, so that the 3,’s with large entries incur very minimal shrinkage.
To induce sparsity, the mixing proportion # should also be small with high
probability, so that most of the B,’s belong to the spike density. To this end,
we recommend setting a = 1,b = G for the B(a,b) prior (5.1) on #. This
ensures that most of the 34’s will be shrunk to zero.
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The spike hyperparameter Ag in (5.4) controls how sparse our final model is,
with larger values of A\ leading to more sparsity. For unstructured GLMs (1.2)
with the SSL prior (2.3), Tang et al. (2017b) recommended tuning A from
cross-validation (CV). For SSGL, we follow Tang et al. (2017b) and similarly
tune A\ using K-fold CV, with a default of K = 10. To accelerate the computa-
tional efficiency, we fit the model on each of the K training sets in parallel, al-
lowing for speed-ups on roughly the order of K. In practice, we tune \g from an
equispaced gI‘ld {)\071, )\072, ey )\O,max}a where 0 < )\071 < )\072 <0 < )\O,max
and Ag max is the smallest value of Ay that results in a MAP estimator of
8= 0,,. It is not hard to see that Ao max = maxi<g<c||Vg €n(0p)]|2, where V,
denotes the subvector of the gradient (1.5) corresponding to the gth group.
Typically, Aomax has an analytical form. For example, in logistic regression,
)\O,max = maxlggggHO.%X; (Y — 0.51”)”2.

To account for potentially different group sizes m,, we further rescale Ag
for each gth group, so that the spike parameter for each B, is Aoy = Ao\/1.
As discussed in Huang et al. (2012), scaling of the regularization penalty by
group size is needed to ensure that groups are not unfairly penalized simply
for being smaller or erroneously included simply for being larger.

Remark 7 An inspection of the proofs of Theorems 1-3 reveals that the theo-
retical results in Theorem 1-3 still hold when we replace the single spike pa-
rameter Ao with Aoy = Ag,/my for each gth group, as long as we still assume
that A\g < G°, ¢ > 2, as in Theorems 1-3, and myax = O(logn A (log G/logn)),
as in Assumption (A2).

5.3 Gibbs sampling for fully Bayesian inference

The EM algorithm in Section 5.1 returns only a single local MAP estimator
(2.6). However, fully Bayesian inference of the grouped GLM model (1.3) is
often desirable, since this allows us to quantify uncertainty for the regression
coefficients. For a number of Bayesian GLMs with discrete responses, we can
use data augmentation with latent variables (Polson et al. 2013; Albert and
Chib 1993) to facilitate Gibbs sampling. In this section, we focus on grouped
logistic regression and grouped Poisson regression using Pélya-gamma data
augmentation (Polson et al. 2013).

A random variable w with density function p(w) is said to follow a Pdlya-
gamma (PG) distribution PG(a,b) with parameters a > 0 and b € R if

s 9k
— , and g ~ Gamma(a,1).
B

Polson et al. (2013) established the relation,

ew a b 2
(1(+e)w) _gb, mp/o e~V 2p(w) duw, (5.8)
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where kK = a — 0.50 and w ~ PG(b,0). In logistic regression, the likelihood
contribution from the ith observation is

L) R )

= rewel g Y€ {0,1}. (5.9)

Let w = (wi,...,w,)". Based on (5.8)-(5.9), the conditional distribution for
B with prior 7(3) in logistic regression is

n

(8 w,¥) = x(8) [[ £(6) (@) exp { - 52~ X0 22~ )}

(5.10)

where Z = (K1 /w1, ..., kn/wn) ", 2 = diag(wy,...,w,), and for i = 1,...,n,
ki = y; — 0.5 and w; ~ PG(1,0).

Meanwhile, for Poisson regression, Li et al. (2018) showed that the likeli-
hood contribution from the ith observation can be approximated as

Ta 0.5y;
Z’L(ﬂ) ~ {exp(Xi B 1Og M)} M
{1+ exp(x/B—1logM)}

(5.11)

for a sufficiently large M > 0. In practice, we can choose M = 1 + max; y;.
Based on (5.8) and (5.11), the approximate conditional distribution for 8 with
prior 7(3) in Poisson regression is

5@ xe)T ez xp).

(5.12)

(8w, ¥) % 1(8) [[£:08) (@)oo |

where Z = (k1 /wy +1og M, ... kp/w, +1logM)T, 2 = diag(wy,...,w,), and
fori=1,...,n, K, =0.5(y; — M) and w; ~ PG(M,0).

The exponential terms in (5.10) and (5.12) are Gaussian kernels. Therefore,
if the prior 7(3) is a Gaussian or a Gaussian scale-mixture, then we can easily
draw samples from 7(3 | w,Y) in our Gibbs sampling algorithm.

Remark 8 The conditional distribution (5.12) is not exact. However, (5.12)
greatly simplifies posterior sampling for 8 in Poisson regression, since the up-
dates for 3 can be obtained in closed form. Sampling from the ezact conditional
distribution of 3 in Poisson regression typically requires Metropolis-Hastings,
which is not practical when 3 is high-dimensional. This is because we cannot
decouple the individual components of 3 in the likelihood function, and there-
fore, we need to update the entire vector B in each MCMC iteration. When 3
is a large vector, there is a very low probability of accepting a proposal draw
for 3, regardless of the proposal density used. Therefore, we sample 3 directly
from the approximate conditional distribution (5.12). In simulation studies,
we found that this approximation was very adequate.
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Suppose that B, ~ ¥(8, | A), where ¥ (3, | ) is the multivariate Laplace
density (2.1). Then By is the marginal prior of the scale mixture,
mg+1 A\

2 2 )

By | 79 ~ N(0,74L,), T4~ Gamma ( (5.13)

Let 7 = (11,...,7¢)" and v = (71,...,7¢) ", and let Bdiag denote a block-
diagonal matrix. Based on (5.13) and the reparameterization (5.4) of the SSGL

prior, we can rewrite the SSGL prior (2.2) for 3 as a Gaussian scale-mixture
hierarchical model,

BT ~N,(0, D;), where D, = Bdiag(m1Im,, .-, TaIme)s

e motl A7) here A = 7o Ap + (1 — )\
TQ‘VQN amma 3 ) o , Where Ag = vg 1+( _'79) 05

vg | @ ~ Bernoulli(6), g=1,...,G.

(5.14)

Due to the hierarchical representation (5.14) of the SSGL prior, we can exploit
conditional conjugacy to obtain the conditional distributions for 3 in (5.10)
and (5.12) in closed form. With a Beta hyperprior (5.1) for 0 in (5.14), the
conditional distributions for 8, 7, v, and w are also all available in closed form.
Our Gibbs sampling algorithm proceeds by sequentially drawing samples
from the conditional distributions of 3, 7, v, 6, and w, holding the other vari-
ables fixed at their current values. If p = > g—1 Mg is greater than n, then we
can also use the fast sampling algorithm of Bhattacharya et al. (2016) to sam-
ple B in O(n?p) time rather than O(p?) time. The complete MCMC algorithms
for Bayesian grouped logistic regression and grouped Poisson regression with
the SSGL prior (2.2) are provided in Section D of the Supplementary Material.

Remark 9 Although we focused on logistic and Poisson regression in this sec-
tion, data augmentation with Pdlya-gamma latent variables also works for
other Bayesian GLMs such as negative binomial regression and multinomial
regression (Polson et al. 2013). Data augmentation with other types of latent
variables can also be used for other GLMs, e.g. Bayesian probit regression
models can be implemented using the approach of Albert and Chib (1993).

6 Simulation studies
6.1 Setup and performance metrics

We investigated the performance of the SSGL prior (2.2) in numerical exper-
iments with G < n and G > n. We considered grouped logistic regression
for binary data and grouped Poisson regression for count data. In particular,
Experiments 3 and 4 in Sections 6.2 and 6.3 are meant to mimic two real
applications where our methodology is especially useful: a) semiparametric
additive models with continuous covariates, and b) genetic association studies
involving single nucleotide polymorphisms (SNPs) (Breheny and Huang 2015).
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In Section E of the Supplementary Material, we also present some simulation
results for grouped negative binomial regression with a log link, which is an
example of our method with a non-canonical link function.

In semiparametric additive models (Experiment 3 in Sections 6.2 and 6.3),
we flexibly model the effects of continuous covariates x; on the mean response
as univariate functions f;(z;). The f;’s are approximated using linear combi-

nations of K basis functions g,x(z;), i.e. fj(z;) ~ Zszl Bikgjk(z;). The jth

o~

main effect f; is then estimated as f;(z;) = 0 if B; = (Bj1,...,Bjx)" = Ok
or as fj(x;) #0if B; # Ok.

In the simulated genetic association studies (Experiment 4 in Sections 6.2
and 6.3), the responses are either binary or count phenotypes, and the covari-
ates are simulated SNPs. SNPs are categorical variables coded as one of three
values {“0”, “1”, or “2”}, depending on the number of minor alleles present
(Breheny and Huang 2015). We thus represent each SNP as a factor with two
levels, i.e. a group of two indicator variables. Assuming that “2” is the base-
line, we can represent each jth SNP z; with two dummy variables I(z; = 0)
and I(z; =1). If z; = 2, then I(z; =0) =I(z; = 1) = 0.

We have implemented SSGL for GLMs in the R package SSGL. In all of our
experiments, we chose the hyperparameters in the SSGL prior as described in
Section 5.2. We compared the performance of SSGL to other group-regularized
estimators of the form,

€,
arg max £,(8) + Y _ peny ([18y2), (6.1)

BeRP =1

where ¢,,(3) is the grouped GLM log-likelihood function defined in (1.4) and
pen, (||Byll2) is a penalty function on ||B,||2 which depends on tuning param-
eter A > 0. Our competitors were the group lasso (GL) (Yuan and Lin 2006),
the adaptive group lasso (AdGL) (Wang and Leng 2008), the group minimax
concave penalty (GMCP) (Breheny and Huang 2015), and the group smoothly
clipped absolute deviation (GSCAD) (Breheny and Huang 2015). We imple-
mented GL, AdGL, GMCP, and GSCAD using the R package grpreg, where
the regularization parameter A > 0 was tuned using K-fold CV with K = 10.
For each of these methods, the penalty was further scaled by ,/m, for each
gth group.

AdGL adds group-specific weights w, to the groups 84,9 = 1,...,G, to
counteract the well-known bias of GL. For AdGL, we chose the weights as

o JUBIIE" i 1Bll2 >,
I 0, lf ||/6£]H2 = 07

where Bg was the GL estimator of 3,. For GMCP and GSCAD, there is an
additional parameter v which controls the concavity of the penalty (Breheny
and Huang 2015). We used the default settings of v = 3 for GMCP and v = 4
for GSCAD in grpreg. While it may be desirable to further tune -, perform-
ing a two-dimensional grid search for (A, ) with CV is very computationally
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expensive. In the simulation settings that we considered, we also did not find
that these methods were very sensitive to the choice of 7, as long as v > 1
for GMCP, v > 2 for GSCAD, and v was not overwhelmingly large for either
method. Thus, for GMCP and GSCAD, we opted to fix 7 and only tuned the
penalty parameter .
We computed the following performance metrics: mean squared error (MSE),

mean squared prediction error (MSPE), true positive rate (TPR), true nega-
tive rate (TNR), and precision (Prec), defined as

n

Z(yi,test - :‘//\i,test)2a

1 ~
MSE:};IIﬁ—ﬁH% MSPE =

Niest i=1
TP TN TP
TPR= - TNR=——  Prece ——
TP + FN’ TN+ FP T TP +FP’

where TP, TN, FP, and FN are the number of true positives, true nega-
tives, false positives, and false negatives respectively. The MSPE was com-
puted using niess = 100 out-of-sample test points {(X; test, Ys test) }ros", and
Uitest = b’ (@7tcst), where ’9\1 is the predicted natural parameter with x; test in
(1.3). For the logistic regression experiments in Section 6.2, we also recorded
the area under the receiver operating characteristic curve (AUC) on the test
data.

6.2 Grouped logistic regression

For logistic regression, we have h(u) = log{u/(1—u)} and b(u) = log(1+e") in
(1.3), so that the left-hand side of (1.3) is log(6;/(1—6;)), and the responses are
independently drawn from y; | x; ~ Bernoulli(1/(1 + exp(—¥6;))),i =1,...,n.
We considered the following four experiments:

Experiment 1 (G < n). We set n = 100 and G = 40. We simulated the
groups to have high within-group correlation. Namely, the rows of each X,
in (1.3) were generated independently from a multivariate Gaussian with
mean 0,,, and covariance matrix 0242, where 0 = 1 and §2, had all off-
diagonal entries equal to 0.8 and diagonal entries equal to one. The group
sizes my were randomly chosen from {3,4,5}, and so = 5 of the vectors 3,
were randomly chosen to be nonzero with entries randomly chosen from
{-2.5,-2,-1.5,1.5,2,2.5}. Then we modeled

0
log (1—(9) =x'p.

Experiment 2 (G > n). We repeated Experiment 1 with n = 100, but
we increased the number of groups to G = 200.
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Experiment 3 (semiparametric regression). We set n = 100 and
G = 80 and generated the entries of the n x G design matrix X from
independent Uniform(—1, 1) random variables. Then we modeled

0 2
log <1_9) = 5sin(3x;) — brse’?s,

i.e. only the covariates x1 and s had a non-null and nonlinear effect on
the mean response, and f;(z;) = 0 for all j ¢ {1,5}. We represented each
covariate as a six-term B-spline basis expansion.

Experiment 4 (genetic association study with G > n). We set
n = 100 and G = 800. We first generated an n x G latent matrix X, where
each ith row x; was drawn from a multivariate Gaussian with mean 0 and
covariance matrix I', where the (7, k)th entry of I was I'j, = 0.57=F|. Then
each entry in X was trichotomized as “0,” “1,” or “2” according to whether
it was smaller than ¢~1(1/3), between ®~1(1/3) and #~1(2/3), or greater
than @~1(2/3). Here, ®~1(-) denotes the inverse cumulative distribution
function (cdf) of a standard normal. Thus, the entries in our final design
matrix X were categorical SNP variables with three levels (“0,” “1”, or
“2"). Letting “2” denote the baseline category, we then modeled

0
log (1_9) = 2.5[(x1 =0) — 2.50(zq = 1) + 1.4I(z15 = 0) + 2.2I(z15 = 1)

- 16]1(1’25 = 0) - 18H($25 = 1)

i.e. only the SNPs 1, x15, and o5 had a significant association with the
phenotype.

We repeated each of the four simulations 200 times. Table 1 reports our exper-
imental results averaged across the 200 replications. Note that in Experiment
3, there is not a “true” @; rather, each jth function f;(x;) is estimated by
fj(xj) = f(]ﬁj, where the (i, k)th entry of )N(j is the kth B-spline basis term
gjk(xij). Thus, we do not report MSE in Experiment 3.

Table 1 shows that in all four experiments, SSGL had either the lowest or
second lowest average MSE and MSPE. SSGL also had the highest average
AUC in all experiments. These results demonstrate that SSGL performed very
well for both estimation and prediction. In terms of group selection, SSGL had
the highest average TPR, indicating that SSGL had the highest power to detect
the truly significant groups. However, this higher TPR came at a loss of TNR
and precision, where GMCP and GSCAD performed the best on average.

The advantages of SSGL were especially pronounced in the G > n setting
(Experiment 4), where the average MSE and MSPE were substantially lower
for SSGL. In Experiment 4, GL, AdGL, GMCP, and GSCAD all faced greater
difficulty picking up the true signals, which led to lower average TPR and
higher estimation and prediction error. However, SSGL also estimated more
false positives, leading to lower precision.
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Table 1: Simulation results for grouped logistic regression under the SSGL,
GL, AdGL, GMCP, and GSCAD models, averaged across 200 replicates. The
empirical standard error is reported in parentheses below the average.

Experiment 1

MSE MSPE AUC TPR TNR Prec
SSGL 0.350 0.128 0.901 0.999 0.580 0.254
(0.044) (0.037) (0.066) (0.014) (0.017) (0.068)
GL 0.348 0.136 0.885 0.999 0.523 0.232
(0.037) (0.037) (0.071) (0.014) (0.050) (0.020)
AdGL 0.356 0.136 0.892 0.999 0.572 0.251
(0.039) (0.040) (0.071) (0.014) (0.037) (0.015)
GMCP 0.438 0.139 0.883 0.599 0.979 0.894
(0.044) (0.042) (0.066) (0.200) (0.037) (0.185)
GSCAD 0.402 0.126 0.900 0.799 0.943 0.781
(0.047) (0.040) (0.067) (0.200) (0.060) (0.222)
Experiment 2
MSE MSPE AUC TPR TNR Prec
SSGL 0.074 0.149 0.883 0.898 0.885 0.174
(0.012) (0.021) (0.011) (0.108) (0.024) (0.045)
GL 0.077 0.158 0.869 0.706 0.920 0.223
(0.019) (0.027) (0.035) (0.300) (0.054) (0.064)
AdGL 0.077 0.157 0.864 0.70 0.911 0.172
(0.019) (0.026) (0.046) (0.303) (0.044) (0.024)
GMCP 0.082 0.156 0.861 0.596 0.999 0.989
(0.201) (0.008) (0.016) (0.201) (0.001) (0.074)
GSCAD 0.075 0.153 0.863 0.892 0.964 0.419
(0.010) (0.024) (0.047) (0.117) (0.015) (0.135)
Experiment 3
MSPE AUC TPR TNR Prec
SSGL 0.109 0.932 1 0.829 0.126
(0.015) (0.017) (0) (0.034) (0.021)
GL 0.112 0.930 1 0.816 0.160
(0.016) (0.017) (0) (0.090) (0.090)
AdGL 0.110 0.931 1 0.816 0.134
(0.015) (0.017) (0) (0.033) (0.021)
GMCP 0.157 0.871 1 1 1
(0.019) (0.042) (0) (0) (0)
GSCAD 0.150 0.887 1 1 1
(0.014) (0.028) (0) (0) (0)
Experiment 4
MSE MSPE AUC TPR TNR Prec
SSGL 0.007 0.180 0.809 0.840 0.978 0.138
(0.001) (0.022) (0.032) (0.167) (0.010) (0.032)
GL 0.010 0.192 0.789 0.833 0.972 0.101
(0.001) (0.016) (0.044) (0.177) (0.004) (0.031)
AdGL 0.010 0.191 0.792 0.825 0.979 0.134
(0.001) (0.016) (0.046) (0.189) (0.006) (0.065)
GMCP 0.009 0.183 0.800 0.669 0.994 0.306
(0.001) (0.016) (0.043) (0.078) (0.002) (0.102)
GSCAD 0.009 0.182 0.802 0.827 0.988 0.207
(0.001) (0.014) (0.056) (0.186) (0.002) (0.035)
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6.3 Grouped Poisson regression

For Poisson regression, we have h(u) = logu and b(u) = e* in (1.3), so that the
left-hand side of (1.3) is log(#;), and the response variables are independently
drawn from y; | x; ~ Poisson(exp(6;)),i = 1,...,n. Our experiments mimicked
those of Section 6.2, except we decreased the magnitude of the entries in the
design matrix X and the signal sizes in B in order to ensure realistic count
values. Our four simulations were as follows:

Experiment 5 (G < n). With n = 100 and G = 40, we simulated X and
B the same way as we did in Experiment 1 of Section 6.2, except we set
02 = 0.3, and the entries in the sy = 5 randomly chosen nonzero vectors
were randomly chosen from {—1,—0.75,0.75,1}. Then we modeled

log(9) =x' .

Experiment 6 (G > n). We repeated Experiment 1 with n = 100, but
we increased the number of groups to G' = 200.

Experiment 7 (semiparametric regression). We set n = 100 and
G = 80 and generated the entries of the n x G design matrix X from
independent Uniform(—1,1) random variables. Then we modeled

log () = 1.5sin(3w;) — 25”575

We represented each covariate as a six-term B-spline basis expansion.

Experiment 8 (genetic association study with G > n). With n =
100 and G = 800, we simulated the SNP categorical variables (“0”, “1”, or
“27) in X the same way that we did in Experiment 4 of Section 6.2. Then
we modeled

- 14]1(&325 = 0) - 18]1(],‘25 = 1)

Each experiment was repeated 200 times. Table 2 reports the results averaged
across the 200 replications. As we explained in Section 6.2, we did not report
the MSE in Experiment 3.

Our findings for grouped Poisson regression were largely consistent with
those for grouped logistic regression. Namely, Table 2 shows that SSGL had the
lowest average MSE and MSPE in all experiments. Thus, SSGL gave superior
performance in terms of estimation and prediction. SSGL also had the highest
average TPR, indicating the highest power to detect the truly nonzero groups.
However, just as in grouped logistic regression, the higher average TPR came
at a cost of lower average TNR and precision.
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Table 2: Simulation results for grouped Poisson regression under the SSGL,
GL, AdGL, GMCP, and GSCAD models, averaged across 200 replicates. The
empirical standard error is reported in parentheses below the average.

Experiment 5

MSE MSPE TPR TNR Prec
SSGL 0.043 4.864 1 0.914 0.626
(0.001) (0.801) (0) (0.007) (0.028)
GL 0.046 6.343 1 0.713 0.333
(0.001) (0.452) (0) (0.017) (0.009)
AdGL 0.044 5.922 1 0.656 0.294
(0.001) (0.484) (0) (0.012) (0.006)
GMCP 0.051 8.216 0.799 0.971 0.799
(0.001) (0.677) (0.032) (0.014) (0.033)
GSCAD 0.051 8.186 0.799 0.971 0.800
(0.001) (0.254) (0.032) (0.008) (0.026)
Experiment 6
MSE MSPE TPR TNR Prec
SSGL 0.008 55.32 0.998 0.850 0.150
(0.001) (27.30) (0.020) (0.025) (0.041)
GL 0.009 56.30 0.995 0.840 0.144
(0.001) (26.530) (0.051) (0.033) (0.033)
AdGL 0.009 55.90 0.997 0.852 0.149
(0.001) (27.06) (0.032) (0.013) (0.016)
GMCP 0.044 59.68 0.401 0.966 0.395
(0.017) (25.42) (0.037) (0.020) (0.360)
GSCAD 0.037 60.31 0.402 0.964 0.308
(0.010) (25.25) (0.035) (0.018) (0.215)
Experiment 7
MSPE TPR TNR Prec
SSGL 16.43 1 0.935 0.284
(0.453) (0) (0.013) (0.017)
GL 16.58 1 0.783 0.106
(0.228) (0) (0.005) (0.003)
AdGL 16.50 1 0.820 0.125
(0.465) (0) (0.004) (0.002)
GMCP 18.72 1 1 1
(0.166) (0) (0) 0
GSCAD 18.72 1 0.999 0.998
(0.185) (0) (0.001) (0.024)
Experiment 8
MSE MSPE TPR TNR Prec
SSGL 0.001 7.98 1 0.999 0.988
(0) (0.639) (0) (0.001) (0.088)
GL 0.003 28.34 1 0.955 0.077
(0.001) (3.69) (0) (0.001) (0.003)
AdGL 0.003 26.60 1 0.955 0.078
(0) (3.89) (0) (0.002) (0.006)
GMCP 0.002 20.22 0.992 0.999 0.988
(0.001) (2.57) (0.085) (0.001) (0.125)
GSCAD 0.002 19.92 0.992 0.999 0.987
(0.001) (2.13) (0.085) (0.001) (0.105)
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Once again, the SSGL also demonstrated its greatest advantage over the
competing methods in the G > n setting (Experiment 4), where the average
MSE and MSPE were substantially lower for SSGL. In this G > n setting,
SSGL also had the highest average TPR, TNR, and precision. This suggests
that SSGL is especially well-suited for estimation and group selection in count
datasets where G is much larger than n.

6.4 Fully Bayesian inference

The simulation studies in Sections 6.2 and 6.3 demonstrated that SSGL often
outperforms GL, AdGL, GMCP, and GSCAD in terms of estimation, predic-
tion, and discovery of true nonzero groups, especially when the number of
predictors p is larger than sample size n. However, these competing methods
do not naturally provide uncertainty quantification of the model parameters.
Thus, an additional advantage of SSGL is its ability to quantify uncertainty
through its posterior distribution.

In this section, we assess the performance of Gibbs sampling algorithm for
SSGL introduced in Section 5.3. This Gibbs sampler is implemented in the R
package SSGL. We conducted the following experiments:

Experiment 9 (grouped logistic regression). With n = 400 and
G = 250 groups of size four (i.e. p = 1000), we simulated X as in Ex-
periment 1 of Section 6.2. We randomly chose sy = 10 of the vectors 3, to
be nonzero with 8, = (—1,—-0.8,0.8, 1)T, and the remaining groups were
set to zero. Then we simulated binary responses y; | x; ~ Bernoulli(1/(1 +
exp(—6;))),i=1,...,n, where log(6;/(1 — 6;)) = x; 3.

Experiment 10 (grouped Poisson regression). With n = 300 and
G = 200 groups of size four (i.e. p = 800), we simulated X as in Experiment
5 of Section 6.2. We randomly chose sg = 10 of the vectors 3, to be nonzero
with B, = (—0.9,-0.7,0.7,0.9) T, and the remaining groups were set to
zero. Then we simulated count responses y; | x; ~ Poisson(exp(6;)),i =
1,...,n, where log(6;) = x, 8.

After generating the data, we used the Gibbs sampling algorithm of Section
5.3 to draw posterior samples. We used the same hyperparameters as those
suggested in Section 5.2. In particular, the spike parameter Ay was first tuned
for the SSGL MAP estimator using the EM algorithm and then fixed at this
value for the MCMC algorithm. We ran the Gibbs sampler for a total of
3000 iterations, discarding the first 1000 samples as burnin. The remaining
2000 samples were used to approximate the marginal posterior distributions
for the regression coefficients. To assess the quality of the SSGL posterior
approximation, we recorded the following metrics:

1. the coverage probability (CP) of the 95% posterior credible intervals (CIs)
for the 40 true non-null coefficients in 3, i.e. the proportion of CIs for the
nonzero regression coefficients {3; : 8; # 0} that contained the true §;.
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Table 3: Simulation results for the SSGL Gibbs sampling algorithm, averaged
across the 200 replicates. The empirical standard error is reported in paren-
theses.

Experiment 9 Experiment 10
CP | 0.960 (0.032) 0.937 (0.039)
Width | 2.44 (0.238) 1.81 (0.048)
ESS | 1523.29 (13.91) 1255.78 (53.92)
MCSE(qo.025) | 0.034 (0.007) 0.033 (0.004)
MCSE(qo.975) | 0.030 (0.008) 0.033 (0.008)

These intervals were constructed using the 0.025 and 0.975 sample quantiles
[90.025(8;), qo.975(B;)] of the saved 2000 MCMC samples for each 3;.

2. the average width of the 95% CIs for the 40 non-null regression coefficients;

3. the average effective sample size (ESS) of the 2000 saved MCMC samples
for the B;’s, 7 =1,...,p;

4. the maximum Monte Carlo standard error (MCSE) of gg.025(5;) and go.975(5;),
j=1,...,p. We denote these quantities by MCSE(qg.o25) and MCSE(qg.975)
respectively.

We repeated Experiments 9 and 10 for 200 replications. Table 3 reports the
CP, Width, ESS, MCSE(qg.025) and MCSE(qo.975) averaged across these 200
replicates. We see that in both experiments, the 95% CIs covered the true
non-null regression coefficients in 3 at close to the nominal rate. Table 3 also
shows that the average widths of the 95% ClIs for the true nonzero coefficients
were not overwhelmingly conservative. Thus, this coverage was not achieved
by the CIs being too wide. Our results verify the usefulness of our SSGL Gibbs
sampling algorithm for quantifying uncertainty of 3.

Table 3 shows that in Experiment 9 (grouped logistic regression), the av-
erage ESS for the 2000 saved MCMC samples was 1523.29, suggesting high
efficiency of our Gibbs sampling algorithm. In Experiment 10 (grouped Poisson
regression), the average ESS for the 2000 saved MCMC samples was slightly
lower (1255.78), and the CIs had average coverage slightly below the nomi-
nal level. This suggests that there was some loss of efficiency from using the
approximation (5.11) for the Poisson log-likelihood in our Gibbs sampler. How-
ever, the CP and ESS were still acceptable in Experiment 10. Finally, in both
experiments, MCSE(q.025) and MCSE(qo.975) indicated an acceptable level of
precision for the 0.025 and 0.975 MCMC sample quantiles.

Figure 1 plots the kernel-smoothed marginal posterior densities for four
regression coefficients from one replication of Experiment 9 (top panel) and
four regression coefficients from one replication of Experiment 10 (bottom
panel). The true parameter values are plotted as solid red vertical lines, and
the SSGL MAP estimates are plotted as dashed vertical lines. Figure 1 shows
that in both grouped logistic regression and grouped Poisson regression, the
SSGL posterior was able to capture the ground truth. Moreover, the SSGL
MAP estimates were close to their true values for the true nonzero coefficients,
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Fig. 1: Estimated marginal posterior densities for four regression coefficients
from one replication of Experiment 9 (top panel) and four regression coeffi-
cients from one replication of Experiment 10 (bottom panel). The true parame-
ter values are plotted as solid red vertical lines, and the SSGL MAP estimators
are plotted as dashed blue lines. The left four plots depict the results for four
nonzero coefficients, while the right four plots depict the results for four null
coeflicients where the SSGL MAP estimate is also exactly zero.
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and they were ezactly equal to zero for the true null coefficients. This is due
to the exact sparsity of the SSGL MAP estimate (2.6).

As discussed, the SSGL posterior mean and median are not exactly sparse.
Therefore, we generally recommend using the EM algorithm of Section 5.1 to
find a sparse local mode which can be used for group selection and estimation.
If uncertainty quantification for 3 is also desired, then the Gibbs sampling
algorithm of Section 5.3 can be used for fully Bayesian inference.

7 Application to HIV drug resistance data

One of the challenges with drug treatments for HIV is the virus’ ability to
rapidly mutate and gain resistance to these drugs. The Stanford HIV Drug
Resistance Database maintains isolates of HIV that were extracted from in-
fected individuals and sequenced. In a study conducted by Rhee et al. (2006),
these isolates were used to predict resistance to 16 antiretroviral drugs used in
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Table 4: Results for SSGL, GL, AdGL, GSCAD, and GMCP on the HIV drug
resistance dataset. The MSPE and AUC were averaged across 200 test sets,
and the empirical standard errors are shown in parentheses.

Number of positions selected MSPE AUC
SSGL 54 0.087 (0.004) 0.951 (0.004)
GL 54 0.088 (0.002) 0.945 (0.003)
AdGL 58 0.089 (0.003) 0.944 (0.003)
GMCP 5 0.102 (0.003) 0.925 (0.004)
GSCAD 11 0.100 (0.025) 0.936 (0.003)

HIV therapy. The outcome in this study was a measure of drug susceptibility,
where a higher value indicated greater resistance to the drug.

For our real data application, we focus on the drug Nelfinavir, a protease
inhibitor (PI), since the data from the study by Rhee et al. (2006) is publicly
available.! Protease genes are made up of sequences of amino acids. A mutation
occurs whenever a position in the sequence contains a different amino acid than
the usual amino acid found at that position. Our dataset consists of n = 842
isolates and G = 82 groups, with a total of p = 361 covariates. Each of the G
groups represents a specific position in the protease amino acid sequence, and
within each gth group, the covariates are 1/0 indicator variables indicating
the presence or absence of a specific amino acid mutation at the gth position.
For example, if Valine is found at position 13 instead of the usual amino acid
at position 13, then the covariate value for Valine in the group g = 13 would
be a “1” instead of a “0.”

In Rhee et al. (2006), a susceptibility index greater than 20 was considered
to be “highly resistant” for PIs. Accordingly, we dichotomized the outcome
into two categories according to whether the susceptibility value was greater
than 20 or not. This led to 300 positive cases (“highly resistant”) and 542
negative cases (“not highly resistant”). We then fit grouped logistic regression
models to the data with the dichotomized responses.

In our study, we are mainly interested in prediction of drug resistance to
Nelfinavir in HIV-infected individuals (Rhee et al. 2006). Nevertheless, group
regularization can help to prevent overfitting and thus improve model gen-
eralization and classification accuracy. We examined the performance of the
SSGL model on this dataset and compared it with GL, AdGL, GMCP, and
GSCAD. The hyperparameters, tuning parameters, and weights were all cho-
sen the same way as they were in Section 6.

To perform group selection, we fit the five grouped logistic regression mod-
els to the full dataset. Next, we assessed the models’ predictive power. To do
so, we randomly divided the dataset into 70% training and 30% test data (i.e.
590 training observations and 252 test observations). We then fit the models
to the training data and evaluated the MSPE and AUC on the held-out test
set. We repeated this process 200 times, so that we had 200 different test sets
on which to evaluate the methods.

! https://myweb.uiowa.edu/pbreheny/data/Rhee2006.html. Accessed June 15, 2023.
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Our results are shown in Table 4. SSGL selected 54 positions. In contrast to
SSGL, GL, and AdGL, the methods GMCP and GSCAD selected much more
parsimonious models. However, the average out-of-sample MSPE was higher
and the average AUC was lower for GMCP and GSCAD than for SSGL, GL,
or AdGL.

Despite the fact that the SSGL selected a less sparse model, SSGL still
achieved the lowest out-of-sample MSPE and the highest out-of-sample AUC.
This indicates that the SSGL model did not suffer from overfitting and pos-
sessed the best ability to correctly classify whether HIV patients were highly
resistant to Nelfinavir or not. On this particular dataset, the SSGL appears to
achieve the best tradeoff between group selection and predictive accuracy.

Supplementary data

The Online Supplementary Material contains proofs of the theoretical results
in Sections 3 and 4, additional details for the EM algorithm and the Gibbs
sampling algorithms introduced in Section 5, and additional simulation studies
for negative binomial regression with a log link.

An R package SSGL to implement the methodology in this paper is publicly
available on the Comprehensive R Archive Network (CRAN).
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