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Abstract

Sparse linear regression methods for high-dimensional data commonly assume
that errors have constant variance, which can be violated in practice. For exam-
ple, Aphasia Quotient (AQ) is a critical measure of language impairment and
informs treatment decisions, but it is challenging to measure in stroke patients.
It is of interest to use high-resolution T2 neuroimages of brain damage to predict
AQ. However, sparse regression models show marked evidence of heteroscedastic
error even after transformations are applied. This violation of the homoscedastic-
ity assumption can lead to biased and inconsistent standard errors of estimated
coefficients and prediction intervals (PI) with improper length. Bayesian het-
eroscedastic linear regression models relax the homoscedastic error assumption
but can enforce restrictive prior assumptions on parameters, and many are
computationally infeasible in the high-dimensional setting. This paper proposes
estimating high-dimensional heteroscedastic linear regression models using a het-
eroscedastic partitioned empirical Bayes Expectation Conditional Maximization
(H-PROBE) algorithm. H-PROBE is a computationally efficient maximum a
posteriori estimation approach that requires minimal prior assumptions and can
incorporate covariates known or hypothesized to impact heterogeneity. We apply
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this method by using high-dimensional neuroimages to predict and provide PIs
for AQ that accurately quantify predictive uncertainty. Our analysis demon-
strates that H-PROBE can provide narrower PI widths than standard methods
without sacrificing coverage. Narrower PIs are clinically important for deter-
mining the risk of moderate to severe aphasia. Additionally, through extensive
simulation studies, we exhibit that H-PROBE results in superior prediction,
variable selection, and predictive inference compared to alternative methods.

Keywords: Bayesian variable selection, ECM algorithm, Empirical Bayes,
Heteroscedasticity, High-dimensional linear regression

1 Introduction

Much of the current literature on sparse linear regression methods for high-dimensional
data assumes that the errors have a constant variance. However, in practice, this
assumption is often violated. A clinical application where high-dimensional het-
eroscedastic data arises is in treatment decisions for neurological disorders based on
patient imaging data. Johnson et al. (2019) present results from a study on lan-
guage rehabilitation in patients who experienced a left-hemispheric stroke and suffer
from aphasia – a language disorder impacting speech. The outcome of interest is the
subjects’ Aphasia Quotient (AQ), a score quantifying language impairment vital to
understanding patients’ treatment options (Risser & Spreen, 1985). However, collect-
ing AQ is a cumbersome task, particularly for patients who have recently had a stroke
(Odekar & Hallowell, 2005). Consequently, it is of interest to develop models that can
predict subjects’ unknown AQ based on images of their brains (Lee, Ko, Park, & Kim,
2021).

While several studies have proposed methods to predict aphasia severity (Lee et al.,
2021; Teghipco, Newman-Norlund, Fridriksson, Rorden, & Bonilha, 2023; Yourganov,
Smith, Fridriksson, & Rorden, 2015), none provide prediction intervals (PIs) for AQ
predictions. Effective decision-making in healthcare relies crucially on combining pre-
dictive models with uncertainty analyses (Begoli, Bhattacharya, & Kusnezov, 2019;
Zou et al., 2023). For example, according to the Western Aphasia Battery, the sever-
ity of aphasia can be classified as follows: AQ of less than 26 is very severe, 26–50 is
severe, 51–75 is moderate, and above 75 is mild (Kertesz, 2007). If a patient’s PI for
AQ spans several categories of aphasia severity, then a clinician could take this predic-
tive uncertainty into account and order additional diagnostic tests or consider other
factors in the patient’s medical history (Zou et al., 2023). Since the PIs can better
guide clinicians in defining patient treatment courses, we develop a PI-based approach
to quantify the predictive uncertainty of AQ predictions.

In our motivating application, data is cross-sectional and consists of brain images
obtained through T1 structural Magnetic Resonance Imaging (MRI), giving the lesion
status (i.e., damaged or not damaged from stroke) of more than 5 × 106 three-
dimensional (1 mm3) brain voxels. As displayed in Figure 1A, patients with little
brain damage commonly score near the top of the 0–100 range, while those with more
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substantial brain damage generally have lower AQ scores. However, there is consider-
able heterogeneity in this trend. When using a high-dimensional homoscedastic linear
regression approach (PROBE, McLain, Zgodic, & Bondell, 2025), Figure 1B suggests
that the total number of damaged voxels (TBD) has a positive relationship with the
residual variance. As a result, the scope of our research concerns applications with
a known low-dimensional set of variables that potentially predict heterogeneity. A
common remedy to heteroscedastic residuals is to use a transformed version of the
outcome. However, Figures 1C and 1D demonstrate that the relationship between
residual error variance (from the PROBE model) and TBD appears to persist with
log and square-root transformations.

This finding solidifies the need for a heteroscedastic approach to predicting patient
AQ scores and providing accurate PIs to help clinical decision-making. If ignored,
heterogeneity can harm multiple areas of analyses, including biased and inconsis-
tent standard errors of estimated coefficients, as well as PIs with improper length
(R.J. Carroll & Ruppert, 1988). These drawbacks can be particularly impactful in
high-dimensional settings where the number of predictors is much larger than the
sample size, and heterogeneity can lead to overfitting. From a clinical perspective,
quantifying the uncertainty of predictive estimates from a machine learning model
is essential because it allows practitioners to assess the reliability of individual pre-
dictions (Banerji, Chakraborti, Harbron, & MacArthur, 2023; Begoli et al., 2019).
Crucially, in settings with marked differences in uncertainty among subjects, mod-
eling heterogeneity enables individual-level risk assessment and supports informed
decision-making under uncertainty.

1.1 High-dimensional heteroscedastic regression

In the classical low-dimensional heteroscedastic linear regression setting where the
number of predictors p is much smaller than the sample size n, ordinary least squares
(OLS) with White standard errors (White, 1980) can be used. Alternatively, restricted
maximum likelihood (REML) approaches with models on both the mean and the
variance (Smyth, 2002) can also be fitted to the data. When p ≪ n, the coefficient
estimates and standard errors under the OLS and REML approaches are unbiased and
consistent (Eicker, 1967; Huber, 1967; White, 1980). However, in high-dimensional
scenarios with p ≫ n, regardless of heteroscedasticity, the model parameters are not
identifiable without additional structure, and OLS and REML estimates are inherently
unstable and non-unique due to the rank-deficient design matrix. To facilitate mean-
ingful estimation in these high-dimensional scenarios, practitioners usually assume
sparsity in the regression coefficients and use penalized regression approaches for both
homoscedastic and heteroscedastic cases.

In heteroscedastic scenarios, penalized linear regression techniques have been
expanded to down-weight outliers or anomalous observations with large error variances
(Alfons, Croux, & Gelper, 2013; Curto, Pinto, Morais, & Lourenco, 2011; Rousseeuw
& Van Driessen, 2006; Ziel, 2016) or use error criteria that are less sensitive to out-
liers (Belloni, Chernozhukov, & Wang, 2014; H. Wang, Li, & Jiang, 2007). However,
these methods may not be suited for scenarios where known factors are hypothesized
to be related to heterogeneity in the data, as in our AQ application, where TBD is
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Total Brain Damage (divided by 1000)
Fig. 1 This figure shows data from our real-world application. In Panel (A), the Aphasia Quotient
(AQ) is plotted as a function of the total brain damage covariate (defined as the number of brain
voxels with lesions). Panels (B), (C), and (D) show the log of squared residuals from homoscedastic
high-dimensional linear regression performed via the PROBE method, using brain image data as
predictors and AQ as the outcome. In Panel (B), PROBE modeled AQ without any transformation.
In Panel (C), PROBE modeled a log-inverse transformation of AQ, AQlog−inv = logAQinv . In Panel
(D), PROBE modeled a square-root-inverse transformation of AQ, AQsqrt−inv =

√
AQinv where

AQinv = (100 − AQ)/100. Red lines in Panels (B)–(D) represent a locally estimated scatterplot
smoothing (LOESS) fit, along with its standard error in gray shading.

related to the residual variance. To address this gap, a second line of research focuses
on modeling the variance of observations. We have located only five such proposals
for the high-dimensional setting, four in the frequentist framework and one in the
Bayesian framework. First, Daye, Chen, and Li (2012) proposed doubly regularized
likelihood estimation with ℓ1 penalty on parameters for both the mean and variance.
Similarly, Chiou, Guo, and Ing (2020) as well as Peng, Chiou, Huang, and Ing (2025)
use a greedy algorithm (Temlyakov, 2000) and backward elimination to select vari-
ables for the models on the mean and the variance. Third, L. Zhou and Zou (2021)
leverage the conceptual framework of Daye et al. (2012) but use sample splitting to
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select predictors via LASSO models on the mean and fit additional LASSO models to
the residual variance. Finally, Pratola, Chipman, George, and McCulloch (2020) pro-
posed heteroscedastic Bayesian additive regression trees (HBART), where, similarly
to Daye et al. (2012) the same predictors are considered for the models on the mean
and the variance.

While many of the above methods can sufficiently incorporate heteroscedasticity in
the high-dimensional setting, very few have investigated creating PIs for future obser-
vations, especially in cross-sectional applications. In time series applications, PIs are
commonly implemented in forecasting and planning, whereas in our high-dimensional
cross-sectional application, PIs can vary from patient to patient and fewer approaches
are available. As a result, estimating PIs is a key motivating factor for heteroscedastic
regression models since the lengths of PIs may vary by patient factors available in the
data. HBART can construct PIs for future observations that account for heteroscedas-
ticity. However, HBART does not perform variable selection for the mean and, as
illustrated in Section 3, is very computationally intensive to fit in the high-dimensional
(p ≫ n) setting. Conformal inference methods (Lei, G’Sell, Rinaldo, Tibshirani, &
Wasserman, 2018; Tibshirani & Foygel, 2019; Vovk, Gammerman, & Shafer, 2005) can
be used with penalized regression. However, their finite-sample coverage guarantees are
marginal and may vary depending on certain predictor combinations. As demonstrated
in our data analysis in Section 4, marginal properties are unsatisfactory for hetero-
geneous data and are particularly inefficient when researchers can well-hypothesize
potential sources of heterogeneity.

Given these limitations, we propose a heteroscedastic high-dimensional linear
regression model estimated with a Heteroscedastic PaRtitiOned empirical Bayes
Expectation conditional maximization (H-PROBE) algorithm, for applications with a
known low-dimensional set of residual variance predictor variables. We base H-PROBE
on the previously established PROBE framework (McLain et al., 2025). PROBE is
a computationally efficient maximum a posteriori (MAP) estimation approach based
on a quasi Parameter-Expanded Expectation Conditional Maximization (PX-ECM)
algorithm (Liu, Rubin, & Wu, 1998; Meng & Rubin, 1993). It requires minimal prior
assumptions on the regression parameters through plug-in empirical Bayes estimates
of hyperparameters in the E-step. The novelty of H-PROBE is that it expands PROBE
by allowing for non-constant residual variance via incorporating covariates known or
hypothesized to impact heterogeneity, assuming cross-sectional data and independence
(no autocorrelation) between observations. Further, we propose methods to estimate
prediction intervals for future observations.

We demonstrate the utility of incorporating heterogeneity when constructing PIs
by analyzing simulated data and our study of AQ in patients with recent left-
hemispheric stroke (Johnson et al., 2019). Our work makes both methodological and
applied contributions. On the methodological side, to the best of our knowledge, H-
PROBE is one of the first Bayesian variable selection approaches for high-dimensional
data that includes both models on the mean and the variance. Further, we demon-
strate that H-PROBE is much less computationally demanding than other Bayesian
regression models fitted with Markov chain Monte Carlo (MCMC), such as HBART.
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On the application side, we expand the literature on AQ prediction by outlining the
first proposal that provides PIs and AQ predictions.

The remaining paper layout is as follows. We describe H-PROBE in Section 2
and numerical studies evaluating its performance in Section 3. Section 4 presents a
comprehensive analysis of the AQ imaging study, and Section 5 concludes with a
brief discussion. Supplementary Materials include more detailed technical content,
additional simulations, and further data analysis results.

2 Methods

2.1 Model framework

In most linear regression models with outcome Y = (Y1, Y2, . . . , Yn), predictors X =
(X1, . . . ,Xp), and error term ϵ = (ϵ1, ϵ2, . . . , ϵn), it is assumed that V ar(ϵi) = σ2 for
all i = 1, . . . , n. As a result, the error term has the same variance for all observations
(homoscedasticity). In a contrasting scenario, the error term may display a variance
that differs from observation to observation. Then, the linear regression model for
heteroscedastic data is written as

Yi = Xiξ + ϵi, (1)

where ξ ∈ Rp, E(ϵi) = 0, and V ar(ϵi) = σ2
i . Let Xik represent predictor k for

observation i, with n × 1 vector Xk = (X1k, . . . , Xnk), n × p design matrix X, and
V ar(ϵ) = Σ = diag(σ2

1 , . . . , σ
2
n) as a diagonal n × n matrix. Assuming Gaussian

errors and independence between observations, the distribution of the outcome is
Y ∼ N(Xξ,Σ), where Σ is a diagonal matrix.

We leverage a Bayesian framework to accommodate a high-dimensional (p ≫ n)
setting and conduct sparse linear regression. Specifically, our model will allow for
sparse and non-sparse predictors in the model on the mean, where the non-sparse
predictors (e.g., an intercept) are denoted by Z ∈ Rn×z. In practice, the model does
not require non-sparse predictors Z. The variance predictors are denoted by V ∈
Rn×v. With this we rewrite the model in (1) as

Y = X(γ ◦ β) +Zφ+ ϵ, (2)

where γ ◦ β is a Hadamard product, γ ∈ {0, 1}p, and φ ∈ Rz. For brevity, let
γβ ≡ γ ◦ β for the remainder. Let D = {D1, . . . ,Dn} with Di = (Yi,Xi,Zi,V i)
denote the observed data. We add the following parametric model on the diagonal
variance matrix Σ,

− log{diag(Σ)} = V ω, (3)

where ω ∈ Rv. The log transformation on the variances ensures positivity, can accom-
modate variances that vary over orders of magnitude, and has been long established in
variance function modeling (R. Carroll, 1988; Cleveland, 1993). The complete Bayesian
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framework includes the following prior information

p(β) =

p∏
k=1

fβ(βk),

p(γ|π) = πp−|γ|(1− π)|γ|,

fβ(βk) ∝ 1,

p(φ) ∝ 1,

π ∼ Uniform(0, 1),

ω ∼ MLG(0, c1/2σ2
ωI, c1, c1),

where MLG denotes a Multivariate Log-Gamma distribution with c, σ2
ω > 0 (Parker,

Holan, & Wills, 2021), and |γ| =
∑

k γk. Throughout, we use σ
−1
ω = 10−5 and c = 1000

to yield a weakly informative prior on ω. The MLG distribution yields conjugate
conditional posteriors in heteroscedastic linear models (Parker et al., 2021). MLG
distributions are useful in contexts where both Gaussian posteriors and computational
efficiency are desired. The MLG prior converges to a multivariate normal prior with
mean 0 and variance σ2

ωI as the value of c approaches infinity (Bradley, Holan, &
Wikle, 2020; Parker et al., 2021).

Our proposed H-PROBE model differs from the PROBE method of McLain et al.
(2025) since H-PROBE includes a model on the variance as shown in Equation (3). In
the present work, we specifically leverage the MLG distribution and its conjugate prop-
erties to allow for heteroscedastic errors. In contrast, PROBE assumes homoscedastic
errors and does not include variance predictors V or coefficients ω. The estimation
procedure described in Section 2.2 also differs between H-PROBE and PROBE. Unlike
PROBE, the estimates of β and ω are conditional on each other within each maxi-
mization step of H-PROBE. The estimated posterior covariance of parameters used
to formulate PIs for H-PROBE also includes the effect of Σ.

2.2 Estimation overview

We begin this Section with an overview of ECM and Parameter-Expanded (PX)
Expectation-Maximization (EM) algorithms. The EM algorithm requires parameter-
izing a model by including latent parameters. Both latent and unknown param-
eters are estimated through an iterative process where the expectation is taken
over latent parameters (E-step), which is used to maximize the expected log-
likelihood (M-step) to obtain estimates for unknown parameters (Dempster, Laird,
& Rubin, 1977). For Bayesian methods, the EM results in MAP estimates of
the parameters. For the model presented above, the standard M-step at itera-
tion t consists of maximizing the expected complete-data log-posterior distribution
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Eγ

{
log p(β,φ,ω|D,γ)|D,β(t),φ(t),ω(t)

}
where the expectation is over γ,

log p(β,φ,ω|D,γ) = log
{
det (exp(−V ω))

− 1
2

}
+

{
−1

2
(Y −Xγβ −Zφ)′ exp(−V ω)−1(Y −Xγβ −Zφ)

}
+ p log(π)− |γ| log

(
π

1− π

)
+ c1′(c

1
2σ2

ωI)
−1ω − c1′ exp

{
(c

1
2σ2

ωI)
−1ω

}
+ constants,

(4)

and (β(t),φ(t),ω(t)) denote the current MAP estimates. Note that this is a non-convex
optimization over the high-dimensional vector (β,φ,ω).

In the ECM algorithm, the single M-step is replaced by multiple computationally
simpler CM-steps (Meng & Rubin, 1993). Specifically, each CM-step maximizes the
expectation of (4) over a subvector of (β,φ,ω) while holding the remaining values
at their current MAP estimates. For example, to find the current MAP estimate of
βk, let W k = X\k(γ\kβ\k) + Zφ where A\k indicates a matrix, or vector without
column or element k. This gives E(Y |W k) = Xkβk +W k, where W k encompasses
the impact of all predictors except Xk.

The PX-EM is another extension of the EM, where the model is rewritten with
auxiliary terms (i.e., expanded parameters) to help with stability and convergence
(Liu et al., 1998). Here, since W k is estimated, we use parameter expansion to include
expanded parameter αk that adjusts for the impact of W k when updating βk for
all k = 1, . . . , p. This gives E(Y |W k) = Xkβk + W kαk. Similarly, let W p+1 =
Xγβ and αp+1 be the expanded parameter for φ such that E(Y |W p+1) = Zφ +
W p+1αp+1. The expanded parameters are jointly optimized with their corresponding
original parameter sub-vector. The PX-EM contains a remapping step, which is critical
to eliminate over-parameterization, maintain identifiability, and preserve the expected
complete-data log-posterior evaluated at the remapped parameters is the same as
at the expanded parameters. In general, Jaakkola and Qi (2006) demonstrate that
Parameter-Expanded Variational Bayes (PX-VB) – which has similarities with the
proposed PX-ECM since both use coordinate-wise updates – improves the convergence
over standard VB by reducing the dependence between the coordinate-wise updates.

The complete M-step of our PX-ECM results in updated MAP values for (β,φ,ω)
and the expanded parameters αβ = (α1, . . . , αp) and αp+1. Here, αβ improves the
estimates of β by reducing the dependence between the coordinate-wise updates. How-
ever, the actual values of αβ play no functional role. Conversely, αp+1 is used in
the remapping step, which remaps β from the expanded to original parameter space.
Specifically, our use of the PX-ECM proceeds as follows. First, we update the MAP
estimates of βk|(γk = 1) and αk for k = 1, . . . , p. Second, we obtain the current MAP
estimates of φ and αp+1. Third, the β estimates are remapped from the expanded to
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the original parameter space. Fourth, the MAP estimate of ω is calculated. Finally,
the E-step is performed.

In Section A of the Supplementary Materials, we derive the modes of the expected
log-conditional posterior distributions of all quantities. The MAP estimate of βk|(γk =
1) and αk at step t are given by

(β̂
(t)
k , α̂

(t)
k )′ = {(C ′

kΣ
−1Ck)

(t−1)}−1(C ′
kΣ

−1)(t−1)Y , (5)

whereCk = (Xk W k) and (CkΣ
−1)(t−1) and (C ′

kΣ
−1Ck)

(t−1) are used to denote the
expectations of these quantities given the MAP estimates of the other parameters, i.e.,

(CkΣ
−1)(t−1) ≡ E(CkΣ

−1|β(t−1)
\k ,φ(t−1),ω(t−1)). These expectations are functions

of the expectations of W k and W 2
k (obtained in the E-step). The updates for φ and

αp+1 are similar to (5) with Cp+1 = (Z W p+1) in place of Ck. The remapped βk

values are α
(t)
p+1β

(t)
k for all k. The MAP estimate of ω does not have a closed form and

is obtained via quasi-Newton optimization (Fletcher, 1987).
The aim of the E-step is to obtain updates for E(W k) and E(W 2

k) for all k,
where the expectations are over γ\k. This requires estimates pk = E(γk) for all k,
made via a novel application of the empirical Bayes estimator commonly used in the
two-groups approach to multiple testing (Efron, 2008; Liang, Paulo, Molina, Clyde, &
Berger, 2008). This procedure requires estimates of the posterior variances of ϕ and
βk|γk = 1 for all k, which are obtained by assuming their marginal posteriors are
Gaussian (given in the Supplemental Materials). The pk estimates update the moments
W k and W 2

k for all k. More discussion contrasting PROBE to other extensions of the
EM algorithm is available in McLain et al. (2025). All technical details for performing
the estimation procedures are provided in Section A of the Supplementary Materials.
The H-PROBE method is implemented in the probe R package available at https://
github.com/alexmclain/PROBE.

2.3 Estimates and model checks

The H-PROBE method converges when subsequent changes in the expected
W p+1 values are small, as they capture changes in all regression param-
eters. Specifically, convergence at iteration t is quantified via CC(t) =

log(n)maxi

{
(W

(t)
i,p+1 −W

(t−1)
i,p+1 )

2/V ar(Wi,p+1|β(t),p(t))
}
, where the ECM algorithm

has converged when CC(t) < χ2
1,0.1 and χ2

1,0.1 represents the 0.1th quantile of a χ2

distribution with 1 degree of freedom. Here, log(n) controls for the impact of sample
size on the maximum of χ2 random variables (Embrechts, Klüppelberg, & Mikosch,

2013). We initiate the algorithm using β(0) = 0 and p(0) = 0, which gives W
(0)
k = 0

and W
2(0)
k = 0 for all k. For the elements of ω(0), we initialize the first element to

log(s2Y ), where s
2
Y is the sample variance of Y , and all remaining elements to 0. These

initial values lead to estimates of β
(1)
k that correspond to the coefficient of a simple lin-

ear regression for each Xk on Y . Algorithm 1 in the Supplementary Materials shows
H-PROBE steps in sequence.
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Table 1 Parameters and estimates provided by H-PROBE. SM = Supplementary Materials.

Parameter Estimate Equation Parameter definition

β β̃ (2), SM Vector of sparse regression coefficients for pre-
dictors in X, conditional on γ = 1, in the
model on the conditional mean.

S2 S̃
2

SM Vector of posterior variances of β|(γ = 1).

γ p̃ (2), SM Vector of inclusion indicators for sparse coeffi-
cients β associated with predictors in X.

φ φ̃ (2) Vector of non-sparse regression coefficients in
the model on the conditional mean.

W p+1 W̃ p+1 SM Overall (non-partitioned) latent parameter
W p+1 = X(γβ).

αp+1 α̃p+1 SM Overall (non-partitioned) coefficient adjust-
ing for the impact of overall (non-partitioned)
W p+1.

ω ω̃ (3) Vector of non-sparse regression coefficients in
the model on the variance.

Σ Σ̃ (3) Diagonal variance matrix Σ = exp{−(V ω)}.

Upon convergence, H-PROBE provides the MAP estimate of (β,φ,ω) and empir-
ical Bayes estimates of pk for all k. Table 1 provides a summary of the critical

parameters W̃ p+1, β̃, p̃, φ̃, α̃p+1, ω̃, Σ̃, and S̃
2
, their estimates, as well as their

definitions. In Numerical Studies (Section 3) and Data Analysis (Section 4), we use
α̃p+1(p̃β̃) – a combination of E(γβ) and the MAP estimate of αp+1 – to estimate the
impact of sparse predictors γβ. While the properties of non-sparse predictor coeffi-
cients φ̃ are not the focus of this research, we do wish to account for the uncertainty
they contribute to the PIs constructed below. We use Ψ̃ to designate the estimated
posterior covariance of (φ̃, α̃p+1), which we use in formulating PIs in Section 2.4.

We provide some guiding principles on how to examine the known low-dimensional
set of variance predictors for inclusion in the model. The first step is to fit a high-
dimensional homoscedastic regression model (via LASSO or PROBE) and extract the
residuals. Second, using the extracted residuals and the known low-dimensional set of
variance predictors, we apply the Breusch-Pagan or White tests (Breusch & Pagan,
1979; White, 1980). Here, we apply the White test as it allows non-linear relation-
ships. Third, we visually inspect plots of the log-squared residuals by the variables
identified in step two to determine appropriate parametric forms. Additionally, for sit-
uations where heterogeneity may depend on a grouping variable, Levene’s, Bartlett’s,
and Brown-Forsythe tests can be used (Seber & Lee, 2003). Section A.5 of the Sup-
plementary Materials provides additional information and examples for model checks.
In situations where variance predictors are not necessary, the PROBE algorithm can
be used as an alternative to H-PROBE.
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2.4 Prediction intervals

This research aims to develop point estimates and PIs for a future observation not
included in the training set with predictor data Xnew, Znew, and V new. MAP esti-
mation does not provide posterior distributions of model parameters, just their mode,
limiting predictive inference capabilities. As a result, we assume that the estimates
of the posterior variance of φ̃ and β̃k|γk = 1 for all k can be used to capture the
posterior variability of these parameters. To predict for a new observation, we use
the MAP estimate of the predicted value Ỹnew = Znewφ̃ + W̃p+1,newα̃p+1, where

W̃p+1,new = Xnew(p̃β̃). Further, the variance of W̃p+1,new is estimated with Ṽnew =

X2
new

{
p̃S̃

2
+ β̃

2
p̃(1− p̃)

}
. To estimate the variance of Ỹnew while acknowledging the

uncertainty in W̃p+1,new, we use

V ar(Ỹnew) = C̃
′
newΨ̃C̃new + Ṽnew

{
V ar(α̃p+1) + α̃2

p+1

}
,

where C̃new = (Znew, W̃p+1,new)
′, which is motivated by the measurement error

literature (Buonaccorsi, 1995). Prediction intervals (PIs) can be formed using the
appropriate critical values with V ar(Ỹnew) + σ̃2

new where σ̃2
new = exp{−(V ′

newω̃)}
denotes the MAP estimate of the variance for a new subject. In the following sections,
we evaluate the empirical coverage probabilities of PIs using this approach for test
data via simulation studies and a clinical application.

3 Numerical Studies

We perform numerical studies to evaluate the performance of H-PROBE. We generate
the outcome using Yi = X ′

i(γβ) + ϵi, where ϵi ∼ N(0, σ2
i ), σ

2
i = exp(−V ′

iω), β ∼
U(0, 2ηβ), and ωj = ω̄ for all j. We set ω̄ such that the expected signal-to-noise ratio
(SNR) is SNR = 1 or 2, where SNR = E{V ar(X ′

iγβ)/ exp(−V ′
iω)}. We generated

correlated continuous predictorsXi ∼ MVN(0+ai,Σ) where ai ∼ N
(
0, 3

4

)
and Σ is a

squared exponential covariance function. Specifically, all predictors are superimposed
on a

√
p × √

p grid, where dk = (d1k, d2k) denotes coordinates of Xk. The (k, k′)
element of the covariance matrix is exp{−||(dk−dk′)/Σcor||22} where || · ||2 denotes the
ℓ2-norm. Σcor quantifies the overall strength of the dependence between predictors.

Our correlation-inducing concept is motivated by Gaussian random fields
(Schlather, Malinowski, Menck, Oesting, & Strokorb, 2015) and mimics the real-world
AQ application, where brain voxels closer together are more correlated than voxels
further away from each other. Similarly, the SNR settings mirror the AQ applica-
tion and, in some scenarios, make estimation more challenging (i.e., those with lower
SNR). We also tested correlated binary predictors generated by applying the indica-
tor that the continuous predictors are less than zero. γ was generated similarly to the
binary predictor variables, such that

∑
γk = pπ in each iteration. Finally, we gener-

ated V to include an intercept along with an equal number of standard normal and
Bernoulli(0.5) predictor variables.

Simulation settings were varied by the number of predictors in X, p = (202, 752),
the number of predictors in V including an intercept, v = (3, 7), the proportion
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of non-zero β coefficients, π = (0.01, 0.05), the signal-to-noise ratio, SNR = (1, 2),
the average effect size of β, ηβ = (0.3, 0.8), and the dependence between predictors,
Σcor = (10, 20, 30). All simulations presented herein had n = 400 observations and
were repeated 400 iterations. For brevity, we focus below on the results for ηβ = 0.8,
Σcor = 20, and binary X predictors. Results for ηβ = 0.3 and continuous X were
nearly identical and are omitted while results for n = 200 and Σcor = (10, 30) were
very similar and are presented in Sections B.1-B.3 of the Supplementary Materials. All
simulations were performed on an Intel Xeon 8358 Platinum processor with 2.6GHz
CPU and 128 GB memory.

We compare H-PROBE to PROBE and LASSO for all settings. We also compare H-
PROBE to heteroscedastic BART (HBART), a Bayesian linear model with a horseshoe
prior (with 6000 MCMC iterations, 1000 used as the burn-in, Carvalho, Polson, &
Scott, 2010) and an empirical Bayes approach for prediction in sparse high-dimensional
linear regression (EBREG, Martin & Tang, 2020). Due to the high computational
cost, we only ran 100 repetitions of these Bayesian competitors for settings for p = 202.
For LASSO, we used the glmnet R package to implement ten-fold cross-validation
(CV) to select parameters requiring tuning. For HBART, we used the rbart R package
with models on the mean and variance as well as default parameters. We specified
the Bayesian model with a horseshoe prior using the horseshoe R package. For the
EBREG approach, we used the ebreg R package. We considered comparisons with
Daye et al. (2012), but the computation requirements were prohibitive, with many
settings running for over one hour per iteration.

The LASSO, PROBE, EBREG, and horseshoe approaches do not model het-
eroscedasticity, while H-PROBE and HBART do. We compared the performance of
the methods with Root Mean Squared Error (RMSE) and Median Absolute Deviation
(MAD, in Section B.1 of the Supplementary Materials) of X ′(γβ), where data X con-
sists of new observations not used during estimation (test set). Figures 2 and B.2 (in
the Supplementary Materials) show that H-PROBE had the lowest RMSE and MAD
for nearly all simulation settings. The horsehoe approach had lower MAD than H-
PROBE when π = 1%. H-PROBE led to marked efficiency gains when the proportion
of signals, the number of predictors on the mean, or the effect size of β were higher.
EBREG, horsehoe, and HBART methods had computation times that were at least
eight-fold that of H-PROBE, PROBE, or LASSO in the smallest p settings (p = 202).
In the settings with SNR = 1 and π = 1%, computation time grew to at least 18-fold
the computational time of H-PROBE, and up to 173-fold that of H-PROBE.

We obtained empirical coverage probabilities (ECPs) of 95% prediction intervals
(PIs), given as the proportion of PIs that contained Yi,test. We compared the PI ECPs
of H-PROBE to PROBE and a Conformal Inference approach based on the LASSO
(split variant, conformalInference R package), which estimates PIs for an existing
model (Tibshirani & Foygel, 2019). Figure 3A shows that the average ECPs for H-
PROBE and Conformal Inference PIs consistently remain centered at 0.95. In contrast,
the average ECPs for PROBE can exceed 0.95 with interquartile ranges above the
0.95 level, particularly when p = 752. The average PI lengths for Conformal Inference
are larger than those for H-PROBE, particularly when p = 752 (Figure 3B). Since
both have ECPs at the nominal level, this is an indication that H-PROBE is using
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Fig. 2 This figure shows the model performance and computation time results from the numerical
studies. Panel (A) shows the log Root Mean Squared Errors (RMSE) of X′(γβ), where X consists
of new observations not used during estimation (test set) for six methods. Panel (B) shows the com-
putation time in seconds for all methods. The methods we compare are: H-PROBE (black squares),
PROBE (blue circles), LASSO (maroon triangles), EBREG (green diamonds), HBART (blue squares
with inner cross), or a Bayesian model with a horseshoe prior (yellow stars). Figures showing results
from additional settings are provided in Section B.1 of the Supplementary Materials.

the heterogeneity information for efficient PI computations. While the focus of our
research is on the construction of PIs, we examined the ECPs of credible intervals for
β and ω in Section B.1 of the Supplementary Materials. We found that the ECPs of
β were accurate and close to the nominal level, whereas the ECPs of ω were below
the nominal level with a wide range. Additional results concerning the performance
of PIs are also reported in Section B.2 of the Supplementary Material.

To compare the variable selection abilities of the methods, we calculated True
Positive Rate (TPR) TPR =

∑
k;γk=1 γ̂k/|γ| and the False Discovery Rate (FDR)

FDR =
∑

k;γk=0 γ̂k/|γ̂| where γ̂k = 1 if variable k was ‘selected’ for the given method.
For H-PROBE and PROBE γ̂k = I(p̃k > 0.5), while a predictor was selected for
LASSO if the estimated coefficient was non-zero. H-PROBE performed well in variable
selection. Figure 4A shows that H-PROBE correctly selects the highest proportion
of the true signals in all settings. Further, Figure 4B shows that H-PROBE has a
lower FDR than LASSO in all settings. Comparing the FDR between PROBE and
H-PROBE, we see they are similar for p = 202 and lower for PROBE when p = 752
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Fig. 3 This figure shows results related to Prediction Intervals (PIs) and Empirical Coverage Prob-
abilities (ECP) from the numerical studies. In Panel (A), ECPs are defined as the proportion of PIs
that contained the value Yi,test from the test set. In Panel (B), PI lengths are the difference between
the upper and lower PI bounds for Yi,test. The methods compared in this figure are H-PROBE (black
squares), PROBE (blue circles), and Conformal Inference (orange crosses), for selected simulation
settings. Vertical lines represent the first and third quartiles of the distributions of ECPs and PI
lengths. Figures showing PI-related results from additional settings are provided in Section B.2 of
the Supplementary Materials.

(where PROBE is markedly conservative). Additional variable selection results are
reported in Section B.3 of the Supplementary Materials.

Sections B.4-B.6 of the Supplementary Materials include additional simulation
results concerning the sensitivity of H-PROBE to initial values for the algorithm and
misspecification of the variance model. We also considered p ≪ n scenarios where we
compared H-PROBE with traditional approaches for low-dimensional heteroscedastic
modeling. Briefly, we found that H-PROBE is robust to initial values, and a misspeci-
fied variance model has some impact on model accuracy, however, average ECPs were
largely unaffected. Finally, when p ≪ n, traditional approaches sacrificed model accu-
racy. REML (Smyth, 2002) resulted in conservative PIs while the other methods had
ECPs markedly below the nominal level.

4 Data Analysis

We return to our motivating example to illustrate the use and distinctive features of
the H-PROBE method. While several researchers have predicted aphasia severity or
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Fig. 4 This figure shows the True Positive Rate (TPR) in Panel (A) and False Discovery Rate (FDR)
in Panel (B) for the H-PROBE (black squares), PROBE (blue circles), or LASSO (maroon triangles)
methods plotted against the number of true signals (|γ| = pπ) and the number of predictors on the
variance. Figures showing TPR and FDR results from additional settings are provided in Section B.3
of the Supplementary Materials.

type using brain images (Lee et al., 2021; Teghipco et al., 2023; Yourganov et al.,
2015), none of these works addressed the fundamental issue of uncertainty quantifica-
tion. Point estimate predictions are often insufficient in clinical settings. Uncertainty
quantification is crucial in precision medicine because it allows providers to assess the
reliability of predictions and formulate optimal treatment plans (Banerji et al., 2023;
Begoli et al., 2019; Zou et al., 2023). Our application aims to use patients’ imaging
and brain damage data to predict and quantify uncertainty of AQ score, which in turn
guides post-stroke aphasia treatment decisions.

The data include n = 167 patients who have recently experienced a left-hemispheric
stroke and are candidates for language rehabilitation therapy (Johnson et al., 2019;
Yourganov et al., 2015). All individuals were scanned using a 3T MRI scanner, and
an expert identified the lesion boundaries by hand via a high-resolution T2 scan.
The lesions were then coregistered to the individual’s T1 scan and warped to have
a common size and shape through an enantiomorphic normalization clinical toolbox
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(Nachev, Coulthard, Jäger, Kennard, & Husain, 2008; Rorden, Bonilha, Fridriksson,
Bender, & Karnath, 2012). The resulting data contain over 5 × 105 binary features
capturing the presence or absence of lesions in each 1mm3 brain voxel. Before compar-
ing the performance of heteroscedastic and homoscedastic approaches in this clinical
scenario, we streamlined the analysis by performing a marginal screening procedure
based on X. Wang and Leng (2016) and retained 3×104 candidate imaging predictors.
X. Wang and Leng (2016)’s screening procedure relies on a projection from a high-
dimensional to a low-dimensional space, retaining the predictors whose components
have the most impact on AQ in the projection. It is those predictors that are ‘screened
into’ the next steps of the analysis. Total Brain Damage (TBD) was retained, i.e., the
total number of voxels with lesions in the brain (out of 5× 105).

Figure 1A displays the relationship between AQ and TBD. Most AQ values are
concentrated near the top of the range for lower brain damage and diffuse as brain
damage increases. The residuals (squared and log-transformed) from homoscedastic
PROBE by TBD are shown in Figure 1B. There is a strong non-linear relationship
between the error variance and TBD. We use the White test to confirm that the
variance of the (squared and log-transformed) PROBE residuals is dependent on TBD
as outlined in Equation (6), with a p-value less than 0.001. Transformations of AQ
also show evidence of heterogeneity (see Figure C.13 and transformation details in
Section C of the Supplementary Materials). As a result, we analyze AQ on the original
scale and account for heteroscedasticity in this application. We use the H-PROBE
approach, where the model on the variance includes TBD as well as its square-root
transformation as predictors

Σ = diag(exp
{
−
(
ω11+ ω2 ×TBD + ω3 ×

√
TBD

)}
. (6)

Our analyses include Conformal Inference (LASSO model, split variant, Tibshirani
& Foygel, 2019), PROBE, and EBREG, a Bayesian method based on empirical priors
for prediction in sparse high-dimensional linear regression (Martin & Tang, 2020).
EBREG provides a simple algorithm based on a local search improvement rule that
correctly identifies the support of the regression coefficients and subsequently provides
PIs. We also include two traditional methods for heteroscedastic linear regression in
the low-dimensional setting: OLS with White standard errors (OLSW, White, 1980),
as well as heteroscedastic regression with models on the mean and the variance using
restricted maximum likelihood (REML, Smyth, 2002).

For all methods, we model the AQ (Y ) as Y = Xβ+ ϵ. For the variable selection
and penalization approaches, X contains all 3 × 104 candidate imaging predictors.
As discussed in Section 1.1, the traditional non-sparse methods (OLSW and REML)
cannot be used when p ≫ n and it is necessary to further reduce the dimension of X
so that p ≪ n. To do so, we applied an additional principal component analysis to the
3 × 104 imaging predictors and selected the first 16 principal components to form a
new X for OLSW and REML. These 16 principal components accounted for 74% of
the total variance of the imaging predictors and aligned with p in the numerical studies
in Section B.6 of the Supplementary Materials. As a result of this, the comparison
between the high- and low-dimensional approaches is not direct. Nevertheless, this
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Table 2 Performance metrics for H-PROBE and three high-dimensional
homoscedastic comparison methods, PROBE, Conformal Inference, and
EBREG, for the Aphasia Quotient (QA) analysis. Two heteroscedastic but
low-dimensional methods are also evaluated, OLSW and REML, and are
indicated by * in the Table.

Method \Metric MAD MSPE Average PI Length ECP

H-PROBE 8.635 220.671 60.749 0.952

PROBE 11.929 380.673 71.558 0.922

Conformal Inference 13.393 509.903 100.192 0.946

EBREG 17.677 614.314 91.582 0.940

OLSW* 12.300 381.735 68.104 0.916

REML* 63.227 5342.808 311.772 1.000

allows us to construct PIs based on OLWS and REML. We used R packages probe,
conformalInference, ebreg, and statmod with 5-fold CV and default parameters
(McLain & Zgodic, 2021; Tang & Martin, 2021; Tibshirani & Foygel, 2019). Due to
the prohibitive computational demands of fitting horseshoe and HBART for moderate
p, we omitted them from our analysis.

To evaluate and compare the methods, we used 5-fold CV to calculate Mean
Squared Predictive Error (MSPE), Median Absolute Deviation (MAD), and empiri-
cal coverage probability (ECP) of 95% PIs where coverage implies that the PI for a
subject in the test fold included their actual observation. Figures in Section C of the
Supplementary Materials provide additional results.

Table 2 shows that H-PROBE had the lowest MAD and MSPE, followed by
PROBE, Conformal Inference, and EBREG. H-PROBE also had the shortest average
PI length with ECP close to the nominal 0.95 level. This pattern is consistent with
H-PROBE providing accurate predictions for new observations and down-weighting
observations with high estimated variance. For the traditional low-dimensional het-
eroscedastic methods, OLSW had similar model performance metrics to those of sparse
approaches, while REML had poor overall performance. Figures C.16 and C.17 in the
Supplementary Materials provide per-voxel statistical brain maps that compare the
performance of H-PROBE to PROBE and LASSO. There is a large overlap between
the voxels with positive β estimates between the H-PROBE to PROBE. However,
H-PROBE provided a more sparse model. This may be due to PROBE’s misspeci-
fied homoscedastic model leading to more false discoveries. There was little overlap
between the voxels selected by H-PROBE and LASSO.

Figure 5 shows PI lengths for each patient and each method by fold. The Conformal
Split and EBREG methods had similar PI lengths, while REML (omitted from Figure
5) had very wide PI lengths compared to all methods. Specifically, the average REML
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PI lengths by CV fold were 317, 310, 311, 311, and 310, respectively. As anticipated, H-
PROBE displayed the widest range of PI lengths, reflected by the differing estimated
σ̃2
i by subject (a Figure of σ̃2

i is given in Figure C.14 of the Supplementary Materials).
While H-PROBE had the lowest average PI length across observations, it had the
largest ECP, so the narrower PIs did not sacrifice coverage. We show predictions
and PIs for two subjects from the study data in Figure 6. The panel for Subject 4
shows moderately wide PIs for H-PROBE and wider PIs for other methods, spanning
multiple AQ severity levels. The AQ predictions for Subject 23 are mild using all
methods but one, and only H-PROBE provided a tight PI that does not go below a
the mild aphasia severity threshold.
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Fig. 5 This figure presents Prediction Interval (PI) lengths as a function of each patient’s predicted
Aphasia Quotient (AQ). H-PROBE is compared to three high-dimensional but homoscedastic meth-
ods, PROBE, Conformal Inference, and EBREG, as well as two low-dimensional but heteroscedastic
methods, OLSW and REML (REML is omitted from the figure). The color legend represents the
cross-validation fold in which predictions were obtained. A version of this figure which includes REML
is shown in Figure C.15 of the Supplementary Materials.

Shorter PIs impact the judgment of clinical outcomes like aphasia severity cate-
gory (AQ less than 26 is very severe, 26–50 is severe, 51–75 is moderate, and above
75 is mild) (Kertesz, 2007). For example, H-PROBE was the only method with PIs
that spanned one aphasia severity category, where 29 subjects were predicted to have
mild aphasia with the lower limit of their PIs above 75. None of the other meth-
ods provided PIs that spanned only one category. EBREG, REML, Conformal Split,
PROBE, OLWS, REML, and H-PROBE had 100%, 100%, 96%, 77%, 77%, and 63%
of their PIs cover at least three severity categories (out of four), respectively. Large
uncertainty hinders the utility of Conformal Split, EBREG, and PROBE in clinical
scenarios as it deprives clinicians of an accurate understanding of patients’ potential
outcomes. Accurate predictions are always critical as they give the most likely patient
outcome. Nevertheless, correctly estimated uncertainty allows clinicians to gauge the
risk of worse (or better) outcomes. In risk-sensitive healthcare settings, understand-
ing the risk is crucial for making treatment decisions that balance patient safety and
treatment efficacy (Banerji et al., 2023). Furthermore, methods that yield correctly
estimated uncertainty can help avoid unnecessary additional diagnostic procedures,
thereby preserving patient care and reducing medical costs. For example, patients with
PIs that are limited to one AQ severity category would not require further testing; a
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Fig. 6 In this figure, predictions and Prediction Intervals (PIs) are compared between six methods
indicated by the color legend. H-PROBE is compared to three high-dimensional but homoscedastic
methods, PROBE, Conformal Inference, and EBREG, as well as two low-dimensional but het-
eroscedastic methods, OLSW and REML. Red stars indicate the subject’s true Aphasia Quotient
(AQ) score, circles indicate the predicted AQ, and the vertical bars represent PI length. AQ ranges
that indicate aphasia severity are: AQ less than 26 is very severe, 26–50 is severe, 51–75 is moderate,
and above 75 is mild.

benefit to the patient, as manual testing for AQ is a difficult task for patients who
have recently had a stroke, and reduces medical expenditures.

5 Discussion

In this paper, we developed a novel approach to conduct high-dimensional linear regres-
sion for heteroscedastic data. H-PROBE uses a Bayesian framework with parameter
expansion and minimally informative priors on the parameters. H-PROBE is a com-
putationally effective solution to sparse linear regression in heteroscedastic settings
that combines an empirical Bayes estimator with the PX-ECM algorithm. Simulation
studies illustrated that accounting for heterogeneity in variance errors via H-PROBE
generally resulted in more accurate estimation and prediction, as shown by lower
MSEs and MADs for model predictions, compared to PROBE, LASSO, HBART,
EBREG, and the horseshoe. Empirical coverage probabilities of prediction intervals
were consistently at the nominal 95% level, with smaller PI lengths than other meth-
ods. H-PROBE is one of the few Bayesian approaches to address these issues in
high-dimensional settings by including models on both the mean and the variance.
Compared to HBART, H-PROBE is more scalable and can perform variable selection,
enhancing H-PROBE’s interpretability in clinical settings.

On the application side, we contributed to the literature on the prediction of
aphasia severity by constructing PIs for AQ scores in stroke patients. Our analyses
reinforced that appropriately accounting for non-constant error variances can improve
predictive ability and PI lengths while maintaining coverage. Accurately assessing the
predictive uncertainty is essential to the acceptance and effectiveness of models in risk-
sensitive healthcare settings (Banerji et al., 2023; Begoli et al., 2019). In such cases,
the level of uncertainty helps physicians gauge the risk associated with a predictive
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estimate (Zou et al., 2023). For example, a predicted AQ with a narrow 95% PI may
lead to a specific treatment plan for post-stroke aphasia, whereas a wide PI may indi-
cate that additional testing is necessary. H-PROBE provided narrow PIs where other
methods could not (in patients with mild aphasia, AQ > 75), which allows clinicians to
define treatment courses that weigh a relevant range of potential treatment outcomes.
PIs and PI lengths that capture patient-level heteroscedasticity enable personalized
treatment decisions based on each patient’s stroke-induced total brain damage and
MRI imaging. In this application, homoscedastic methods such as Conformal Infer-
ence, PROBE, and EBREG are likely to yield less accurate predicted AQ values and,
consequently, suboptimal treatment decisions compared to H-PROBE.

We focused our research on the situation where known heterogeneity markers exist
in the data. However, in practice, the variables’ impact on heterogeneity may be
unknown. A valuable extension of H-PROBE is to the situation where model selection
on mean and variance parameters is required (Chiou et al., 2020; K. Zhou, Li, & Zhou,
2021). If the heterogeneity markers are appropriately included in the variance model,
observations with high residual variability will be accordingly down-weighted. A limita-
tion of H-PROBE is that it assumes a linear model, which may be insufficiently flexible.
In contrast, HBART models both the mean and the variance nonparametrically (Pra-
tola et al., 2020). As a trade-off, however, HBART is much more computationally
demanding than H-PROBE. One way to achieve greater flexibility for H-PROBE while
retaining its computational advantages over HBART is to use a semiparametric addi-
tive model Yi =

∑p
k=1 f(Xik) + ϵi. In this case, we could approximate each f(Xik) as

a linear combination of basis functions and use H-PROBE to regularize basis coeffi-
cients to zero, similar to Bai, Moran, Antonelli, and Boland (2022) and Guo, Jaeger,
Rahman, Long, and Yi (2022). This is a useful extension for future work. Another rel-
evant extension of H-PROBE is to settings where the observations are dependent or
autocorrelated. In this case, it would be necessary to estimate a covariance matrix Σ
with nonzero off-diagonal entries.

Abbreviations. AQ, aphasia quotient; PI, prediction interval; TBD, total brain
damage; MRI, magnetic resonance imaging; MAP, maximum a posteriori; PX, param-
eter expanded; EM, expectation-maximimization; ECM, expectation conditional
maximization; SNR, signal-to-noise; CV, cross-validation; ECP, empirical coverage
probability; RMSE, root mean squared error; MSE, mean squared error; MAD, median
absolute deviation; TPR, true positive rate; FDR, false discovery rate; MSPE, mean
squared predictive error; LAD, Least Absolute Deviation; LTS, least trimmed squares.

Supplementary information. Supplementary Materials: The Supplementary
Materials contain an expanded Methods section as well as additional results from
simulations and real data analyses. (.pdf).
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