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A Expanded Methods Section

A.1 Model framework and posteriors

The complete model framework is presented in the main text. We briefly review the
models on the mean and the variance. Our model on the mean allows for sparse and
non-sparse predictors, though it does not mandate including non-sparse predictors.
We write the model on the mean as

Y = X(γβ) +Zφ+ ϵ, (1)
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where X and Z represent the n × p sparse and n × z non-sparse predictor matrices,
γβ is a Hadamard product, γ ∈ {0, 1}p, and φ ∈ Rz. Let D = {D1, . . . ,Dn} with
Di = (Yi,Xi,Zi,V i) denote the observed data. We add the following parametric
model on the diagonal variance matrix Σ,

− log{diag(Σ)} = V ω, (2)

where ω ∈ Rv.
We use a Parameter-Expanded Expectation-Conditional-Maximization (PX-ECM)

algorithm for estimation. Within the algorithm, the parameter estimates at iteration t
are used to obtain the expected complete-data log-posterior distribution with respect
to γ,

Eγ

{
log p(β,φ,ω|D,γ)|D,β(t),φ(t),ω(t)

}
, (3)

which is sequentially maximized to obtain maximum a posteriori (MAP) estimates

β(t+1), φ(t+1), and ω(t+1) (i.e., Σ(t+1)) (discussed in Sections A.3 and A.4). For γk,
plug-in empirical Bayes estimators are used to estimate the posterior expectation
p = (p1, . . . , pp) where pk = P (γk = 1|D, π) (discussed in Section A.4).

To show the conditional posterior distribution of β given γ, we split (X,β) into
(Xγ ,βγ) when γk = 1 and (X γ̄ ,βγ̄) when γk = 0. Conditional on γ and ω (i.e., Σ),
the posterior distribution of γβ and φ is(

βγ

φ

) ∣∣∣∣(D,ω,γ) ∼ N
{
(C ′

γΣ
−1Cγ)

−1C ′
γΣ

−1Y , (C ′
γΣ

−1Cγ)
−1
}

where Cγ = (Xγ Z), while βγ̄ |(D,ω,γ) ∼ δ0(·) a point mass at zero. Given β, γ,
and φ the posterior for ω has density

fω(ω) ∝ exp {c′ωHωω − κ′
ω exp (Hωω)} , (4)

which is proportional to an MLG(0,Hω, cω,κω) distribution with

Hω =

[
V

c−1/2σ−1
ω Iv

]
, cω =

(
1

2
1′
n, c1

′
v

)′

, and (5)

κω =

(
1

2
||Y −X(γβ)−Zφ||2, c1′

v

)′

,

where Iv denotes a v × v identity matrix, 1v a v × 1 vector of ones, and ||x||2 = xx
is a Hadamard product.

A.2 Estimation and notation

We begin this Section with an overview of ECM and PX-EM algorithms. The EM algo-
rithm requires parameterizing a model by including latent parameters. Both latent and
unknown parameters are estimated through an iterative process where the expecta-
tion is taken over latent parameters (E-step), which is used to maximize the expected
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log-likelihood (M-step) to obtain estimates for unknown parameters (Dempster, Laird,
& Rubin, 1977). In the ECM algorithm, the single M-step is replaced by multiple
computationally simpler CM-steps, helping optimization (Meng & Rubin, 1993). The
PX-EM is another extension of the EM approach, where the model is rewritten with
auxiliary terms (i.e., expanded parameters) to help with stability and convergence
(Liu, Rubin, & Wu, 1998).

We now describe the PROBE algorithm (McLain, Zgodic, & Bondell, 2025). The
aim is to perform MAP estimation for γ, β, and φ in a high-dimensional setting.
PROBE is based on a PX-ECM algorithm, which is a combination of the ECM and
PX-EM algorithms (Liu et al., 1998; Meng & Rubin, 1993). The CM-step of the PX-
ECM results in coordinate-wise (predictor-specific) optimization, where the remaining
parameters are restricted to their values at the previous iteration. As a result, both
PROBE and H-PROBE partition the mean of the model (1) by predictor k. The
notationA\k indicates the matrix, vector, or collection without predictor or element k.
Define W k = X\k(γ\kβ\k) +Zφ = (W1k, . . . ,Wnk)

′ and thus E(Y |W k) = Xkβk +
W k, where W k encompasses the impact of all predictors except Xk.

Note that W k is unknown as it is a function of parameters (β\k,φ) and the
“missing data” γ\k. SinceW k is estimated as part of the algorithm, we use parameter-
expansion (Liu et al., 1998) to include parameters αk, which adjust for the impact of
W k when updating βk for all k = 1, . . . , p. This results in

E(Y |W k) = Xkβk +W kαk, (6)

for k = 1, . . . , p. The αk parameter helps estimate the posterior variance of βk|(γk = 1)
more accurately since it accounts for the dependence between W k and Xk (discussed
further in Section A.3). This posterior variance is required in our implementation of
the E-step and used to create prediction intervals.

The core difference between PROBE and H-PROBE is that the latter approach
estimates the MAP of ω in addition to the MAP of φ and βk|(γk = 1) for all k =
1, . . . , p. Table A.1 provides a summary of the parameters estimated by H-PROBE
and described in Sections A.3 and A.4.

H-PROBE generally consists of four steps. First, in the CM-steps discussed in
Section A.3, φ and β\k are fixed to their values from the previous iteration when
estimating βk, for all k (Meng & Rubin, 1993). Then, the E-step discussed in Section
A.4 updates E(W k) and E(W 2

k), where the expectations are over γ\k. Third, after
the moments of the W k’s are updated, they are used to perform the subsequent CM-
steps. Finally, the MAP estimator of ω does not have a closed form. As a result, we
perform the maximization for this parameter via quasi-Newton optimization (Fletcher,
1987). Algorithm 1 and subsequent Sections describe the H-PROBE steps in sequence.

Along with the notation for W k and Ck = (Xk W k) described above, we define
an ‘overall’ non-partitioned W , denoted by W p+1 = X(γβ), and αp+1 as expanded
parameters for φ. We also define Cp+1 = (Z W p+1). The calculations in Section A.4
require

W
(t−1)
ik = E(Wik|β(t−1)

\k ,p
(t−1)
\k , α

(t−1)
p+1 ,ω(t−1),φ(t−1)) for k ≥ 1
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Table A.1 Parameters and estimates provided by H-PROBE. SM = Supplementary
Materials.

Parameter Estimate Equation Parameter Definition

β β̃ (1), (6) Vector of sparse regression coefficients for pre-
dictors in X, conditional on γ = 1, in the
model on the conditional mean.

S2 S̃
2

(11) Vector of posterior variances of β|(γ = 1).

γ p̃ (1), (6) Vector of inclusion indicators for sparse coeffi-
cients β associated with predictors in X.

φ φ̃ (1) Vector of non-sparse regression coefficients in
the model on the conditional mean.

W p+1 W̃ p+1 (6) Overall (non-partitioned) latent parameter
W p+1 = X(γβ).

αp+1 α̃p+1 (6) Overall (non-partitioned) coefficient adjust-
ing for the impact of overall (non-partitioned)
W p+1.

ω ω̃ (2) Vector of non-sparse regression coefficients in
the model on the variance.

Σ Σ̃ (2) Diagonal variance matrix Σ = exp{−(V ω)}.

W
(t−1)
i,p+1 = E(Wi,p+1|β(t−1),p(t−1)),

W
(t−1)
ℓ = (W

(t−1)
1ℓ , . . . ,W

(t−1)
nℓ ) for ℓ ∈ (1, . . . , p, p+ 1)

with analogous notation for the second moments W
2(t−1)
i,p+1 , W

2(t−1)
ik , and W

2(t−1)
ℓ .

Some key quantities in the CM-step updates are

(W
′

ℓΣ
−1)(t−1) =

n∑
i=1

W
(t−1)
iℓ /σ

2(t−1)
i

(W
′

ℓΣ
−1W ℓ)

(t−1) =

n∑
i=1

W
2(t−1)
iℓ /σ

2(t−1)
i where σ

2(t−1)
i = exp(−V iω

(t−1)).

Further, let

(C ′
kΣ

−1Ck)
(t−1) =

(
X ′

kΣ
−1(t−1)Xk X ′

k(Σ
−1W k)

(t−1)

(W
′

kΣ
−1)(t−1)Xk (W

′

kΣ
−1W k)

(t−1)

)
(7)

for k = 1, . . . , p.

We define (C
′

p+1Σ
−1Cp+1)

(t−1) similarly to (7) where Xk and W k are replaced with
Z and W p+1, respectively.
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A.3 CM-step

The CM-steps maximize the expected complete-data log-posterior distributions of
(βk, αk) for partitions k ∈ (1, . . . , p), as well as (φ, αp+1,ω) for partition p + 1.
The ‘overall’ model associated with the non-partitioned W p+1 is estimated via
E(Y |W p+1) = Zφ + αp+1W p+1 and focuses on the parameters (φ, αp+1,ω). The
remaining partitions focus on (βk, αk)

′ via (6).
For partitions k = 1, . . . , p, the complete-data log-posterior dis-

tribution is denoted by log p(βk, αk|D,W k,Γk) and its expectation
Eγ{log p(βk, αk|D,W k,Γk)|D,β\k,φ,ω,Γ\k)} is conditional on β\k, p\k, φ, and ω.
Γ\k represents the hyperparameters for β\k,α\k,φ, and ω. At iteration t for these
partitions, the CM-step maximizes

(β̂
(t)
k , α̂

(t)
k )′ = argmax(βk,αk)E

(t−1)
k {log p(βk, αk)|D,W k,Γk)} (8)

where E
(t−1)
k represents the expectation over γ\k. For the kth partition of iteration t,

the MAP estimator is(
β̂
(t)
k

α̂
(t)
k

)
=
{
(C ′

kΣ
−1Ck)

(t−1)
}−1 (

C
′

kΣ
−1
)(t−1)

Y . (9)

For partition p + 1, the complete-data log-posterior distribu-
tion is denoted by log p(φ, αp+1|D,W p+1,Γ) and its expectation
Eγ{log p(φ, αp+1|D,W p+1,Γ)|D,β,ω,Γ)} is conditional on β, ω, and hyperpa-
rameters Γ. For the overall model at partition p + 1 and iteration t, the CM-step
maximizes

(φ̂(t), α̂
(t)
p+1)

′ = argmax(φ,αp+1)E
(t−1)
γ {log p(φ, αp+1)|D,W p+1,Γ)}, (10)

and the MAP values for (φ, αp+1) are(
φ̂(t)

α̂
(t)
p+1

)
=
{
(C

′

p+1Σ
−1Cp+1)

(t−1)
}−1 (

C
′

p+1Σ
−1
)(t−1)

Y . (11)

For ω(t), the MAP estimator has no closed form. As a result, we use a quasi-Newton
optimizer (Fletcher, 1987) on the log posterior distribution of ω to find the MAP

estimate ω(t). Then, we obtain Σ−1(t) = exp{−(V ′ω(t))}−1.
The E-step used in Section A.4 requires an estimate of the posterior variance of

βk|(γk = 1). Here, the posterior covariance of (β̂
(t)
k , α̂

(t)
k ) is estimated by

{(C ′
kΣ

−1Ck)
(t−1)}−1{(C ′

kΣ
−1)(t−1)C

(t−1)
k }{(C ′

kΣ
−1Ck)

(t−1)}−1, (12)

where Ŝ
2(t)
k denotes the (1, 1) element. We use the Ŝ

2(t)
k ’s to create prediction intervals.
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A.4 E-step

Before commencing with the E-step, to accelerate convergence we limit the step size
using learning rates q(t) via

β
(t)
k = (1− q(t))β

(t−1)
k + q(t)β̂

(t)
k , and

S
2(t)
k = {(1− q(t))(S

2(t−1)
k )−1 + q(t)(Ŝ

2(t)
k )−1}−1.

(13)

We use q(t) = 1
t+1 , which creates a moving average of βk over iterations. McLain et

al. (2025), Minka and Lafferty (2002), and Vehtari et al. (2020) provide a discussion
on learning rates and their implications.

To estimate pk = P (γk = 1|Y , π0) while maintaining uninformative priors, we
use a plug-in empirical Bayes estimator, which is motivated by two-groups approach
to multiple testing where many test statistics with zero and non-zero expectations
are available (Castillo & Roquain, 2020; Efron, 2008; Liang, Paulo, Molina, Clyde,

& Berger, 2008). We define test statistics as T (t)
k = β

(t)
k /S

(t)
k with distribution (1 −

γk)f0(·) + γkf1(·), where f0(·) ∼ N(0, 1) and f1(·) is unknown and related to fβ . We
also require π0, the proportion of null hypotheses. This yields the plug-in empirical
Bayes estimator of the posterior expectation of γk as

p
(t)
k = 1−

π̂
(t)
0 f0(T (t)

k )

f̂ (t)(T (t)
k )

, (14)

where π̂
(t)
0 and f̂ (t) are empirical Bayes estimates of π0 and f based on the observed

T (t)
k ’s. In our simulations and data analyses, we use π̂(t) =

∑
k I(P

(t)
k ≥ λ)/{p ×

(1 − λ)}, based on Storey (2007), where P
(t)
k is a two-sided p-value for T (t)

k and
λ = 0.1 (Blanchard & Roquain, 2009), and Gaussian kernel density estimation on

T (t) = (T (t)
1 , . . . , T (t)

p ) to obtain the estimated marginal distribution f̂ (t) (Silverman,
1986).

Finally, we estimate the first and second moments of W ℓ. These moments are
expectations of W ℓ over the unknown γ. Through the use of the ECM, the values of β
and φ are fixed at their estimates from the previous iteration. Independence between
γk’s allows effective computation to be performed at the observation i level through

W
(t)
i,p+1 = E{Xi(γβ)|β(t),p(t)} = Xi(β

(t)p(t)), (15)

and W
2(t)
i,p+1 = E(W 2

i,p+1|β
(t),p(t)) = V ar(Wi,p+1|β(t),p(t)) + (W

(t)
i,p+1)

2 where

V ar(Wi,p+1|β(t),p(t)) = X2
i

{
β(t)2p(t)(1− p(t))

}
. (16)
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Algorithm 1 The H-PROBE algorithm

Initialize W (0), W 2(0), and Σ(0)

while CC(t) ≥ χ2
1,ε and max(p(t)) > 0 do

CM-step

UseW
(t−1)
ℓ andW

2(t−1)
ℓ to estimate ξ

(t)
ℓ for ℓ = 1, . . . , p, p+1 via (9)–(11).

E-step

(a) Calculate β
(t)
k and S

2(t)
k using (13) for all k.

(b) Estimate f̂ (t) and π̂
(t)
0 and use them to calculate p(t) via (14).

(c) Calculate W (t) and W 2(t) via (15) and (16).
Calculate CC(t) and check convergence.

Online calculations of W
(t)
k and W

2(t)
k are made by subtracting the contributions

of the kth predictor from W
(t)
p+1 and W

2(t)
p+1, respectively. As a result, the high-

dimensional matrix computations in (15) and (16) only need to be made once per
iteration.

A.5 Model checks

Algorithm 1 shows H-PROBE steps in sequence. Upon convergence, H-PROBE pro-
vides MAP estimates β̃, p̃, φ̃, α̃p+1, ω̃, Σ̃ as well as S̃2

k, the posterior variance of

β̃k|(γk = 1), for all k. While the properties of φ̃ are not the focus of this research, we
do wish to account for the uncertainty it contributes to the MAP estimates in predic-
tion intervals. To this end, let

Ψ̃ = {(C ′
p+1Σ̃

−1
Cp+1)

(t−1)}−1{(C ′
p+1Σ̃

−1
)(t−1)C

(t−1)
p+1 }{(C ′

p+1Σ̃
−1

Cp+1)
(t−1)}−1

denote the estimated posterior covariance of (φ̃, α̃p+1). Prediction intervals for a future
observation are presented in detail in the main text.

In addition to the guidelines we described at the end of Section 2.3 of the main
article, plots of the residuals or the log-squared residuals can also be used to deter-
mine if transformations of variables are necessary. Figure A.1 shows an example of
residual plots used to validate model assumptions. Both panels are from homoscedas-
tic LASSO models with 50 observations of 100 sparse predictors. The data used in
each model was generated such that the residual variance is associated with a linear
covariate (Panel (a)) and a non-linear covariate (variable+ variable2, Panel (b)). In
both plots, the covariate has a relationship with the residual variance. This associa-
tion is weaker in Panel (a), while it is stronger in Panel (b). The residuals in Panel (a)
show that the linear form of the heterogeneity variable fulfills the parametric assump-
tions of the variance model in (2), whereas Panel (b) shows that additional non-linear
transformations of the heterogeneity variable are needed to fulfill the assumptions of
the variance model.
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Fig. A.1 This figure shows residuals from a high-dimensional homoscedastic LASSO model. The
Log Residuals Squared are plotted against a linear and non-linear heterogeneity variable. Plots of
the residuals can be used to determine if transformations of variables are necessary to address het-
eroscedasticity. The residuals in Panel (a) show that the linear form of the heterogeneity variable
fulfills the assumptions of the variance model in (2), whereas Panel (b) shows that additional trans-
formations of the heterogeneity variable are needed to fulfill the assumptions of the variance model.

B Additional Simulation Results

B.1 Model and predictive performance

We examined the performance of H-PROBE by focusing on the Root Mean Squared
Error (RMSE, main text) and Median Absolute Deviation (MAD) of X ′(γβ), where
data X consists of new observations not used during estimation (test set, n = 400).
Figure B.2 shows that for all simulation settings except one, H-PROBE had the lowest
MAD, especially when the proportion of signals, the number of predictors on the
mean, or the effect size of β were higher. Results are shown for ηβ = 0.8, binary X,
and Σcor = 20 for brevity. In the setting where H-PROBE slightly underperformed
compared to PROBE, the MAD was 6% higher for H-PROBE.

To capture the overall joint uncertainty of parameters β and ω, we performed
a Markov Chain Monte Carlo sensitivity check based on credible intervals for each
parameter. Within each simulation setting, we examined the average Empirical Cov-
erage Probability (ECP) of each parameter’s credible intervals across the simulation
iterations. Figure B.3 shows that overall, parameter β had lower error and credible
interval ECP consistently around 95%. The spread of the ECPs for ω were markedly
wider than for β and did not cover the nominal coverage level across many settings.
There were no consistent trends across simulation settings regarding overall joint
uncertainty. For example, in some settings with lower proportions of signals (π = 1%),
the average credible interval ECP for parameter ω covered the nominal level, more
than settings with higher proportions of signals (π = 5%), but only when the signal-
to-noise (SNR) ratio was SNR = 1. Results for ηβ = 0.3 and continuous X were very
similar and are omitted.
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Fig. B.2 This figure shows model performance results from the numerical studies, via the log Median
Absolute Deviation (MAD) of X′(γβ), where X consists of new observations not used during esti-
mation (test set) for six methods. The methods we compare are: H-PROBE (black squares), PROBE
(blue circles), LASSO (maroon triangles), EBREG (green diamonds), HBART (blue squares with
inner cross), or a Bayesian model with a horseshoe prior (yellow stars), for selected simulation set-
tings.
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Fig. B.3 This figure shows an approximate measure of the joint estimation error of parameters β
and ω for selected simulation settings. The approximate measure is the average Empirical Coverage
Probability (ECP) of the parameters’ Monte Carlo Markov chain credible intervals, across the sim-
ulation iterations. Black squares indicate the average credible interval ECP for β, while blue circles
represent the ECP for ω.

We also examined the bias and standard deviation of the ω̃ coefficient estimates,
from the model on the variance. Results are shown for binary X, Σcor = 20, and
n = 400 for brevity. Figure B.4 shows the average bias for the intercept ω1, the first
continuous coefficient ω2, and the first binary coefficient ω3, with the vertical bars
indicating the minimum and maximum bias across v and SNR settings. The results are
displayed by p, π, and ηβ settings. In all settings, the bias was lower for first continuous
and binary coefficients ω2 and ω3, respectively, compared to intercept ω1. Generally,
bias was more pronounced overall in the ultra high-dimensional setting (p = 752) with
more true signals among the available predictors (π = 5%). The standard deviation for
intercept ω1 and first binary coefficient ω3 was higher than for continuous coefficient
ω2 in all settings.
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Fig. B.4 This figure show the average bias (green circle) and standard deviation (purple squares)
of the ω̃ estimates from H-PROBE simulations. Vertical lines represent the minimum and maximum
bias and standard deviations averaged across simulation settings displayed.

To investigate performance in simulation settings closer to our application, we
focused on settings where n = 200 and also varied the degree of correlation between
the (binary) predictors we generated, with Σcor = (10, 20, 30) where a higher number
indicates more correlation. Figure B.5 mirrors Figure 3 from the main text, and shows
Log Root Mean Squared Errors (RMSE) when n = 200 across various levels of predic-
tor correlation. The results are highly similar to those when n = 400 and Σcor = 20.
In nearly all simulation settings, H-PROBE had the lowest RMSE and this finding
varied little whether predictors were more or less correlated.

B.2 Prediction interval performance

Figure B.6 mirrors Figure 4 of the main text and shows ECPs of PI for H-PROBE,
PROBE, and Conformal Inference. Settings with p = 752 and π = 5% are not shown
for PROBE and H-PROBE as they fall outside of the sparsity assumptions (more
signals than observations) of these methods and inference may therefore not be per-
formed accurately. Generally, the same ECP and PI trends are observed with n = 200
as with n = 400 (main text) and patterns were similar across Σcor = (10, 20, 30). In all
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Fig. B.5 This figure shows the model performance results from the numerical studies, for selected
settings when the number of observations is closer to our real-world application, n = 200, and where
the degree of dependence between the predictors varies (Σcor = (10, 20, 30)). The figure presents the
log Root Mean Squared Errors (RMSE) of X′(γβ), where X consists of new observations not used
during estimation (test set) for six methods. The methods we compare are: H-PROBE (black squares),
PROBE (blue circles), LASSO (maroon triangles), EBREG (green diamonds), HBART (blue squares
with inner cross), or a Bayesian model with a horseshoe prior (yellow stars).

Σcor settings, H-PROBE had ECPs centered at the nominal level 0.95 despite having
much shorter PI lengths than PROBE and Conformal Inference. As shown in Figure
B.7, PROBE and Conformal Inference have substantially larger PI lengths and there-
fore can easily reach ECPs greater than 0.95. Results for ηβ = 0.3 and continuous X
were very similar and are omitted.

B.3 Variable selection performance

To evaluate the variable selection performance of the methods under n = 200 and
Σcor = (10, 20, 30), we display the True Positive Rate (TPR) and False Discovery Rate
in Figures B.8 and B.9, respectively. As in Figure 5 of the main text, H-PROBE has
the highest TPR in all settings displayed (Figure B.8). H-PROBE has a lower FDR
than LASSO in all settings, while PROBE has the lowest FDR (Figure B.9).
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Fig. B.6 This figure shows the results related to Prediction Intervals (PIs) and Empirical Coverage
Probabilities (ECP) from the numerical studies, under new settings n = 200 and (Σcor = (10, 20, 30)).
The ECPs are defined as the proportion of PIs that contained the value Yi,test from the test set. The
methods compared in this figure are H-PROBE (black squares), PROBE (blue circles), and Conformal
Inference (orange crosses). Vertical lines represent the first and third quartiles of the distributions of
ECPs for PIs. Settings with p = 752 and π = 5% are not shown for PROBE and H-PROBE as they
fall outside of the sparsity assumptions.

B.4 Sensitivity to initialization

To evaluate the sensitivity of H-PROBE to the algorithm’s initial values, we examined
the impact of three initialization schemes on model performance and PI ECP for
various settings. The first initialization scheme, Initialization A, is β(0) = 0 and p(0) =

0, which gives W
(0)
k = 0 and W

2(0)
k = 0 for all k as described in Section 2.3 of the

main text. The second initialization scheme, Initialization B, uses the results of the

PROBE algorithm to give starting values for β(0), p(0), W
(0)
k , and W

2(0)
k for all k

(McLain et al., 2025). Finally, the third initialization scheme, Initialization C, draws

β(0) values from a standard normal distribution, sets p(0) equal to the absolute value

of β(0) truncating at 0 and 1, in turn giving values for W
(0)
k and W

2(0)
k .

Figure B.10 shows simulation results for H-PROBE from settings initialized using
each of the three initialization schemes. For brevity, we focus on the results for ηβ =
0.8, p = 202, Σcor = 20, and binary X predictors. Results for ηβ = 0.3 and continuous
X were very similar and are omitted. Both the model performance (RMSE of X ′(γβ))
and predictive inference performance (ECP of PIs) remain mostly unaffected by the
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Fig. B.7 This figure shows the results related to Log Average Prediction Intervals (PI) lengths from
the numerical studies, under new settings n = 200 and (Σcor = (10, 20, 30)). The methods compared
in this figure are H-PROBE (black squares), PROBE (blue circles), and Conformal Inference (orange
crosses). Vertical lines represent the first and third quartiles of the distributions of PI lengths. Settings
with p = 752 and π = 5% are not shown for PROBE and H-PROBE as they fall outside of the
sparsity assumptions.

initialization scheme, showing very similar average RMSEs and ECPs and interquartile
ranges within simulation settings.

B.5 Robustness to misspecification

To evaluate the robustness of H-PROBE to misspecifications in the model on the
variance, additional simulation studies were run. These studies examine the situation
where additional (unnecessary) variables are included in V since the situation where
important variables are missing from V can be inferred from the PROBE results
(where there is no V ). In the simulations where the variance model was correctly
specified, we generated V to include an intercept, along with an equal number of
standard normal and Bernoulli(0.5) predictor variables, and modeled V accordingly.
In the misspecified H-PROBE variance models, we modeled V with a superfluous
squared standard normal predictor.

Figure B.11 shows simulation results for correctly and incorrectly specified H-
PROBE variance models. For brevity, we focus on the results for ηβ = 0.8, p =
202, Σcor = 20, and binary X predictors. Results for ηβ = 0.3 and continuous X
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Fig. B.8 This figure shows True Positive Rate (TPR) results from the numerical studies, under
new settings n = 200 and (Σcor = (10, 20, 30)). The TPR is displayed as a function of true signals
(|γ| = pπ) and the number of predictors on the variance. H-PROBE is represented by black squares,
PROBE by blue circles, and LASSO by maroon triangles.

were very similar and are omitted. The Log RMSE of X ′(γβ) values were slightly
elevated for the misspecified model, with some overlap in their ranges (Figure B.11
Panel A). Misspecification in the variance model again did not severely impact ECPs,
which were all close to the nominal 0.95 level, and always included 0.95 in their range
(Figure B.11 Panel B). The misspecified model led to larger interquartile ranges for the
ECPs. However, adding superfluous variables to the variance model does not appear
to hamper the overall error rate of the PIs.

B.6 Comparison with traditional heteroscedastic approaches
in p ≪ n settings

To compare H-PROBE to established methods for heteroscedastic linear regression,
we conduct simulations in the p ≪ n setting. The simulation settings are as described
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Fig. B.9 This figure shows False Discovery Rate (FDR) results from the numerical studies, under
new settings n = 200 and (Σcor = (10, 20, 30)). The FDR is displayed as a function of true signals
(|γ| = pπ) and the number of predictors on the variance. H-PROBE is represented by black squares,
PROBE by blue circles, and LASSO by maroon triangles.

in Section 3 of the main text, with the following differences: the number of predic-
tors in the model is p = 42, and the degree of dependence between the predictors
is Σcor = 10. Since π = 1% and π = 5% yield less than one signal, we instead use
π = 6% and π = 12%, which give one and two signals, respectively. In addition to the
H-PROBE, PROBE, LASSO, EBREG, HBART, and Horseshoe methods, we incor-
porate linear regression with ordinary least squares (OLS), OLS with White standard
errors (OLSW, Eicker, 1967; Huber, 1967; White, 1980), as well as Smyth (2002)’s
heteroscedastic regression with non-sparse models on the mean and the variance using
residual maximum likelihood (REML). Using lower values for p and Σcor and (p = 42

, Σcor = 10) facilitated the matrix operations required in the REML approach. Higher
values led to less-than-full rank matrices due to the nature of the application for which
we developed H-PROBE, where predictors are correlated.
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Fig. B.10 (A) Model performance and (B) Prediction Interval (PI) results from numerical studies
using different initial values for H-PROBE only. Panel (A) shows the log Root Mean Squared Errors
(RMSE) of X′(γβ), where X consists of new observations not used during estimation (test set).
Panel (B) shows empirical coverage probabilities (ECPs) of PIs. The three initialization schemes are
represented by the color legend. Vertical lines represent the first and third quartiles of the distributions
of RMSE and ECPs of PIs.

Figure B.12 shows the model and predictive inference performance of the nine
methods in low-dimensional settings. For brevity, we focus on the results for ηβ = 0.8
and binary X predictors. Results for ηβ = 0.3 and continuous X were very similar and
are omitted. Figure B.12 Panel A shows that traditional approaches for heteroscedas-
ticity, such as OLS, OLSW, and REML, had a higher Log RMSE of X ′(γβ) than
all other approaches. This is likely because they do not perform variable selection or
penalization. H-PROBE either had the lowest Log RMSE or was among the methods
with lower Log RMSEs. In Figure B.12 Panel B, OLS and OLSW had the lowest ECPs
for PIs, as expected, while the other traditional heteroscedastic approach, REML, had
larger ECPs than all other methods, exceeding the 95% nominal level. This is further
evidenced by Figure B.12 Panel C, where REML has by far the largest average PI
length of all methods.

C Additional Data Analysis Results

This Section provides additional results and information regarding the AQ appli-
cation and analysis. To ensure that the non-linear relationship between the error
variance σ2

i and total brain damage could not be remedied by a transformation of
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Fig. B.11 (A) Model performance and (B) Prediction Interval (PI) results from numerical studies
using correctly specified (black squares) and misspecified (blue circles) variance models in the H-
PROBE method. Panel (A) shows the log Root Mean Squared Errors (RMSE) of X′(γβ), where X
consists of new observations not used during estimation (test set). Panel (B) shows empirical coverage
probabilities (ECPs) of PIs. Vertical lines represent the first and third quartiles of the distributions
of RMSE and ECPs of PIs.

the Aphasia Quotient (AQ) outcome, we performed additional analysis examining
transformations of AQ. We examined multiple transformations and provide figures for
two of the transformations. We applied log and square root inverse transformations

to AQ, AQlog−inv = log
(

100−AQ
100

)
and AQsqrt−inv =

√(
100−AQ

100

)
, and modeled

AQlog−inv, AQsqrt−inv using the PROBE method, a homoscedastic approach. Figure
C.13 shows that despite of both transformations, the non-linearity of the relationship
between the error variance σ2

i and total brain damage remains. This result remained in
other transformations we examined. The dashed blue line in Figure C.13.a represents
the form we assumed for the variance model in our data analysis (Equation (6) of the
main text). The dashed blue line effectively approximates the LOESS line, indicating
that our choice of predictors in the H-PROBE model on the variance performs well.
Figure C.14 shows that H-PROBE provides predictions Ŷi that have a different range
for distinct values of estimated σ̃2

i . This important characteristic of heteroscedastic
data is not detected by PROBE. Figure C.15 mirrors Figure 5 from the main text and
shows PI lengths for each patient and each method by cross-validation fold, including
the REML method. The Conformal Split and EBREG methods had similar PI lengths,
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while REML had large PI lengths overall. H-PROBE displayed the widest range of PI
lengths, reflected by the differing estimated σ̃2

i by subject from Figure C.14.
For both PROBE and H-PROBE, the voxels with large coefficients appear to be

located in and around the Inferior Frontal Gyrus, which contains Broca’s region, a
vital area of the brain for speech production. The pathophysiology of strokes results
in detrimental effects on cerebral structures and functions. As a result, negative β
estimates, which suggest a protective or beneficial impact of strokes on the brain,
contradicts established neuroscientific understanding. As shown in Figure C.16, most
of the selected β estimates for H-PROBE and PROBE are positive. The LASSO model,
which was markedly more sparse, resulted in only negative β estimates. Among voxels
with larger p̃k (p̃k > 0.05) all coefficients estimated by H-PROBE were positive, versus
all negative for LASSO. Figure C.17 provides per-voxel statistical brain maps for the
LASSO method. Since stroke injury is constrained by vasculature, and the presence
of a brain injury is an inclusion criteria of the study data, negative β estimates for a
given voxel indicate that the core brain modules related to speech have been spared
and are omitted from Figure C.17. The LASSO model overwhelmingly resulted in
negative β estimates, and only one voxel appears on the brain maps, in the fourth
brain slide from the left.
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Fig. B.12 (A) Model performance and (B)–(C) prediction interval results from numerical stud-
ies using new low-dimensional simulation settings. The variable selection methods we compare are:
H-PROBE (black squares), PROBE (blue circles), LASSO (maroon triangles), EBREG (green dia-
monds), HBART (blue squares with inner cross), Bayesian model with a horseshoe prior (yellow
stars). The methods without variable selection are: OLS (red squares with inner cross), OLSW (pink
diamonds with inner cross), and REML (green stars). Panel (A) shows the log Root Mean Squared
Errors (RMSE) of X′(γβ), where X consists of new observations not used during estimation (test
set) for the nine methods compared. Panel (B) shows empirical coverage probabilities (ECPs) of Pre-
diction Intervals (PIs). The ECPs are defined as the proportion of PIs that contained the value Yi,test

from the test set. Vertical lines represent the first and third quartiles of the distributions of ECPs for
PIs and of PI lengths.
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Fig. C.13 This figure shows data from our real-world application. In this data, the Aphasia Quotient
(AQ) outcome is related to the total brain damage (TBD) covariate (defined as the number of brain
voxels with lesions). Panels (a) and (b) show the log of squared residuals from homoscedastic high-
dimensional linear regression performed via the PROBE method, using brain image data as predictors
and AQ as the outcome. In Panel (a), a log-inverse transformation was used, AQlog−inv = logAQinv ,
while Panel (b) used a square-root-inverse transformation, AQsqrt−inv =

√
AQinv where AQinv =

(100−AQ)/100. The red lines in Panels (a)–(b) represent a locally estimated scatterplot smoothing
(LOESS) fit, along with its standard error in grey shading. The dashed blue line in Panel (a) represents
the form we assumed for the variance model in our data analysis (Equation (6) of the main text).
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Fig. C.14 This figure presents predicted values of the Aphasia Quotient (AQ) for each patient i,
plotted as a function of each patient’s estimated error σ̃2

i using the H-PROBE and PROBE methods.
The cross-validation fold for each patient is indicated in the color legend. Note that within a given
fold, σ̃2

i estimates for observation i are the same when using PROBE.
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Fig. C.15 This figure presents Prediction Interval (PI) lengths as a function of each patient’s pre-
dicted Aphasia Quotient (AQ). H-PROBE is compared to three high-dimensional but homoscedastic
methods, PROBE, Conformal Inference, and EBREG, as well as two low-dimensional but het-
eroscedastic methods, OLSW and REML. The color legend represents the cross-validation fold in
which predictions were obtained.

Fig. C.16 Brain maps showing position, direction, and magnitude of voxel-specific β coefficients
across different slides for PROBE (top) and H-PROBE (bottom). The color legend represents the
magnitude of β estimates where |β| < 0.1 are omitted.
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Fig. C.17 Brain maps showing position, direction, and magnitude of voxel-specific β coefficients
across different slides for the LASSO model. The color legend represents the magnitude of β estimates.
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